
Classical Logic with Partial Functions

Hans de Nivelle

Instytut Informatyki, University of Wroc law, Poland

Abstract. We introduce a semantics for classical logic with partial func-
tions. We believe that the semantics is natural. When a formula contains
a subterm in which a function is applied outside of its domain, our se-
mantics ensures that the formula has no truth-value, so that it cannot be
used for reasoning. The semantics relies on order of formulas. In this way,
it is able to ensure that functions and predicates are properly declared
before they are used. We define a sequent calculus for the semantics, and
prove that this calculus is sound and complete for the semantics.

1 Introduction

Partial functions occur frequently in mathematics and programming. In high-
school, one is taught that one ‘should not divide by zero’. Similarly, one is taught
that log(0) and tan π

2 ‘do not exist’. In programming, partial functions are even
more abundant. A pointer can only be dereferenced if it is not the null-pointer.
A vector has only a first element if it is non-empty. A file can only be read from
if it is in a good state.

One approach to partial functions is what is called the traditional approach
to partial functions in [5] and [6]: In this approach, (1) variables and constants
are always defined, and (2) formulas are always true or false. Atoms (includ-
ing equalities) containing undefined subterms are always false. Although the
traditional approach takes partiality serious, it does not fit with our view that
ill-typed formulas should not be propositions at all. (Because no assumptions
should be made about programs containing undefined values.)

For this reason, many authors ([1, 8]) have taken an approach based on three-
valued Kleene logic. Three-valued logic is obtained by introducing an extra value
u, which is the truth-value for undefined propositions. It is assumed that the
truth values are ordered as f < u < t. Using this order, P ∨ Q can be defined
as MAX<(P, Q). Negation can be defined from [f ⇒ t, u ⇒ u, t ⇒ f]. Other
operators can be introduced through standard equivalences. The well-definedness
approach of [2, 9] is closely related to Kleene logic, although at first it may appear
different, due to its proof-theoretic motivation. In the WD-approach, one has to
prove that a formula is well-defined before it is used. It can be seen from the
definitions in [9] that a formula is not well-defined iff it would take the value u
in Kleene logic.

Kleene logic (and the WD-approach) are closer to our intuitions, but there is
a difference: In our view, ill-defined formulas are not unknown, but errors after
which nothing can be assumed. The justification for setting t∨u = t, is the fact

that whichever value u will take, the t ensures that the disjunction will be true.
In our philosophy, nothing should be assumed about error values.

In addition to this philosophy, our system has some other, teachnical features
that we believe may be useful: Preconditions of partial functions and types are
treated in a unified way, and they are treated inside the logic itself, not by
an external type system. This ensures that the logic does not have any built-
in restrictions on type systems with which it is used. Both the type and the
preconditions of a partial function can be expressed by ordinary formulas, as for
example in ∀x, y Nat(x)∧Nat(y) → Nat(x + y). Subtraction can be specified as
a partial function by the formula: ∀x, y Nat(x) ∧ Nat(y) ∧ x ≥ y → Nat(x − y).

In our setting, partial functions are functions that sometimes have results
about which nothing can be assumed. If the specification of the function requires
that it throws exceptions, then something is assumed about the result. We view
exceptions as a form of polymorphism, which is different from partiality. Our
system is flexible enough to handle both polymorphism and partiality.

In order to connect preconditions to formulas, we introduce two binary op-
erators: The first operator is the lazy implication operator [A]B, the second
operator is the lazy conjunction operator 〈A〉B. We call the operators ‘lazy’ be-
cause they do not look at the second argument when the first argument is false.
(Similar to && and || in C). Because of this, B needs to be a proposition only
when A is true, so that truth of A can be assumed when proving that B is a
proposition. In the strict operators A → B and A ∧ B, the second argument
must be a proposition independent of A.

We now introduce the syntax and semantics of our system, which we will call
PCL (Partial Classical Logic).

Definition 1. The set of terms of PCL (partial classical logic) is recursively
defined by the following rule: If t1, . . . , tn are terms (with n ≥ 0), and f is a
function symbol with arity n, then f(t1, . . . , tn) is also a term. We call function
symbols with arity 0 constants or variables, dependant on how they are used.

Using the set of terms, we define the set of formulas of PCL recursively as
follows:

– ⊥ and > are formulas.
– Every term A is a formula. We will call formulas of this form atoms.
– If t1, t2 are terms, then t1 = t2 is a formula.
– If A is a formula, then ¬A is a formula.
– If A and B are formulas, then A ∧ B, A ∨ B, A → B, and A ↔ B are

formulas.
– If A and B are formulas, then [A]B and 〈A〉B are formulas.
– If x is a variable, A is a formula, then ∀x A and ∃x A are formulas.
– If A is a formula, then Prop(A) is a formula.

The intuitive meaning of Prop(F) is ‘F is a formula’. The logic is set up in such
a way, that type correctness of formulas and terms must be proven within the
calculus. As a consequence, there is no syntactic distinction between formulas
and terms in Definition 1.

We will now introduce a lattice on non-truth values. It will be used in Defi-
nition 3, to ensure that logical operators behave in a predictable way when their
arguments are not valid propositions. This has the advantage that many meta-
properties of the logic can be formulated as equivalences. For example, without
the lattice on non-truth values, I(A) = I(A∧A) would not hold as equality. This
would have no effect on the provable formulas, because the equality would still
hold for the truth values. The lattice is only a trick to make the meta-properties
nicer. We do not intend to use the lattice for abstraction, as is proposed in [7].

Definition 2. Let S be a set. A relation v is called a partial order if it meets
the following requirements: (1) For all s ∈ S, s v s. (2) For all s1, s2, s3, s1 v
s2 ∧ s2 v s3 ⇒ s1 v s3. (3) For all s1, s2, s1 v s2 ∧ s2 v s1 ⇒ s1 = s2. Let S′

be a subset of S. We call s ∈ S a lower bound of S ′ if for all s′ ∈ S′, s v s′.
We call s a greatest lower bound of S ′ if s is a lower bound of S ′, and for every
lower bound ŝ of S ′, we have ŝ v s.
We write uS′ for the greatest lower bound of S ′, if it exists. If S′ is finite, we
write s1 u s2 u · · · u sn instead of u{s1, s2, . . . , sn}.

It is easily checked that the greatest lower bound is unique if it exists.

Definition 3. An interpretation I = (D, f , t,v, []) is defined by

– A domain D.
– Two distinct truth constants f and t, such that both of f , t ∈ D,
– A partial order v on D\{f , t}, s.t. every non-empty D′ ⊆ D\{f , t} has a

greatest lower bound uD′, which is in D\{f , t}.
– a function [] that interprets function symbols as follows: If f is a function

symbol with arity n, then [f] is a total function from Dn to D.

As said above, the role of the partial order v is to obtain predictable behaviour
of the logical operators when they are applied on non-Boolean objects.

Definition 4. Let I = (D, f , t,v, []) be an interpretation. We recursively define
the interpretation I(F) of a formula F as follows:

– I(⊥) = f , I(>) = t.
– If F = [f], then I(f(t1, . . . , tn)) = F (I(t1), . . . , I(tn)).
– If I(t1) = I(t2), then I(t1 = t2) = t. Otherwise, I(t1 = t2) = f .
– If I(A) = t, then I(¬A) = f . If I(A) = f , then I(¬A) = t. Otherwise

I(¬A) = I(A).
– We characterize the strict binary operators:

• If I(A) ∈ {f , t}, and I(B) 6∈ {f , t}, then I(A ∧ B) = I(A ∨ B) = I(A →
B) = I(A ↔ B) = I(B).

• If I(A) 6∈ {f , t}, and I(B) ∈ {f , t}, then I(A ∧ B) = I(A ∨ B) = I(A →
B) = I(A ↔ B) = I(A).

• If both I(A), I(B) 6∈ {f , t}, then I(A ∧ B) = I(A ∨ B) = I(A → B) =
I(A ↔ B) = I(A) u I(B).

• If both of I(A), I(B) ∈ {f , t}, then ∧,∨,→,↔ are characterized by the
following (standard) truth table:

I(A) I(B) I(A ∧ B) I(A ∨ B) I(A → B) I(A ↔ B)
f f f f t t
f t f t t f
t f f t f f
t t t t t t

– We characterize the lazy binary operators:
• If I(A) = f , then I([A]B) = t, and I(〈A〉B) = f .
• If I(A) 6∈ {f , t}, and I(B) ∈ {f , t}, then I([A]B) = I(〈A〉B) = I(A).
• If both I(A), I(B) 6∈ {f , t}, then I([A]B) = I(〈A〉B) = I(A) u I(B).
• If I(A) = t, then I([A]B) = I(〈A〉B) = I(B).

– Next come the quantifiers: Let x be some variable. Let F be a formula. Let
R = { Ix

d (d) | d ∈ D}, where Ix
d is defined as usual.

• If R 6⊆ {f , t}, then I(∀x F) = I(∃x F) = u(R\{f , t}).
• If R = {f}, then I(∀x F) = I(∃x F) = f .
• If R = {t}, then I(∀x F) = I(∃x F) = t.
• If R = {f , t}, then I(∀x F) = f and I(∃x F) = t.

– It remains to characterize Prop. If I(A) ∈ {f , t}, then I(Prop(A)) = t.
Otherwise, I(Prop(A)) = f .

Valid judgments will be represented by sequents.

Definition 5. A context is a finite sequence of formulas Γ1, . . . , Γn. A sequent
is an object of form Γ ` A, in which Γ is a context and A is a formula.

We introduce two notions of validity for sequents. The first notion is the standard
notion. The second, stronger notion is the notion that we will be using.

Definition 6. Let Γ1, . . . , Γn ` A be a sequent. We call Γ1, . . . , Γn ` A valid if
in every interpretation I = (D, f , t,v, []), s.t. I(Γ1) = · · · = I(Γn) = t, we also
have I(A) = t. We call the sequent Γ1, . . . , Γn ` A strongly valid, if it is valid,
and in addition the context Γ1, . . . , Γn has the following property: Either for all
i with 1 ≤ i ≤ n, we have I(Γi) = t, or for the first i with 1 ≤ i ≤ n that has
I(Γi) 6= t, we have I(Γi) = f .

The sequent A ` A is valid, but not strongly valid. One can take an interpretation
I with I(A) = e, for some e 6∈ {f , t}. The sequent Prop(A), A ` A is strongly
valid because it is valid, and if I(A) = e, then I(Prop(A)) = f . Similarly, the
sequent ` A∨¬A is valid, but not strongly valid. The sequent Prop(A) ` A∨¬A
is strongly valid.

The notion of strong validity captures the fact that functions and predicates
have to be declared before they are used. If one has a context Γ1 and a formula
A, for which Γ1 6|= Prop(A), then there exists an interpretation I, in which
I(Γ1) = t and I(A) 6∈ {f , t}, so that no sequent of form Γ1, A, Γ2 ` B can be
strongly valid. The following example illustrates declaration of partial functions,
and usage of the lazy operators 〈 〉 and [] :

F1 ∀x Prop(Nat(x)),
F2 ∀xy Nat(x) ∧ Nat(y) → Prop(x ≥ y),
F3 ∀xy [Nat(x) ∧ Nat(y)] x ≥ y → Nat(x − y),
F4 ∀xy [Nat(x) ∧ Nat(y)] x ≥ y → ∃z 〈 Nat(z) 〉 〈 x ≥ z 〉 x − z = y.

In F2, the relation ≥ is defined on natural numbers. This can be done with
standard implication → because Prop(x ≥ y) is always Prop by itself. In F3,
subtraction x − y is declared to return Nat on the condition that x ≥ y. Here
lazy implication must be used, because without Nat(x), Nat(y), x ≥ y would
not be Prop. In F4, 〈 〉 must be used with ∃ to declare z in Nat, but also to
declare x ≥ z, because otherwise x − z would not be Nat.

We aim to define a sequent calculus that is able to model strong validity. It
turns out that definition of this calculus is simpler when one defines a one-sided
calculus, in which sequents are refuted instead of proven. The reasons for this
are the following: Validity of Prop(A) ` A∨¬A and the fact that the semantics
is based on truth-values, suggest that PCL is essentially classical (in contract
to intuitionistic). At the same time, the notion of strong validity depends on
the order of formulas in the sequent. Allowing formulas to freely move from
the premise to the conclusion in a sequent, which would be needed for classical
¬-rules, and simultaneously keeping track of the order of the formulas in the
sequent, is tedious. It can be avoided by using one-sided sequents.

Definition 7. A one-sided sequent is an object of form Γ1, . . . , Γn `, in which
Γ1, . . . , Γn (n ≥ 0) is a sequence of formulas. We say that Γ1, . . . , Γn ` fails in
an interpretation I if there is an i, (1 ≤ i ≤ n), s.t. I(Γi) 6= t. We will usually
write ‘sequent’ instead of ‘one-sided sequent’, since it is always clear from the
form which type is meant.

We say that Γ ` fails strongly in I if there is an i, (1 ≤ i ≤ n), s.t. I(Γi) = f
and for all j, (1 ≤ j < i), I(Γj) = t. If we want to stress that Γi is the first
formula in Γ with I(Γi) 6= t (which implies that I(Γi) = f), then we say that Γ
fails strongly at Γi in I.

We call the one-sided sequent Γ ` unsatisfiable if it fails in every interpreta-
tion. We call Γ strongly unsatisfiable if it fails strongly in every interpretation.

Theorem 1. Let Γ ` A be a sequent. Γ ` A is strongly valid if and only if the
one-sided sequent Γ,¬A ` is strongly unsatisfiable.

Proof. Write Γ = Γ1, . . . , Γn ` with n ≥ 0. For convenience, define Γn+1 := ¬A.
Assume that Γ ` A is strongly valid. We have to show that the sequent

Γ1, Γ2, . . . , Γn+1 ` is strongly unsatisfiable. Let I be an arbitrary interpretation.
We have to show that there exists an i, (1 ≤ i ≤ n + 1) with property Φ(i),
where Φ(i) is the property that I(Γi) = f , and for all j, (1 ≤ j < i), I(Γj) = t.
We distinguish two cases:

– If for all i, 1 ≤ i ≤ n, I(Γi) = t, then it follows from validity of Γ ` A that
I(A) = t, so that I(¬A) = f . Since ¬A = Γn+1, we have Φ(n + 1).

– If there is an i with 1 ≤ i ≤ n, s.t. I(Γi) 6= t, then by strong validity of
Γ ` A (See Definition 6), we have I(Γi) = f for the first i with I(Γi) 6= t. It
follows that we have Φ(i).

In order to show the other direction, assume that Γ1, . . . , Γn, Γn+1 ` is
strongly unsatisfiable. We first show that Γ1, . . . , Γn ` A is valid. Let I be an in-
terpretation. Assume that I(Γ1) = I(Γ2) = · · · = I(Γn) = t. It follows from the
strong unsatisfiability of Γ1, . . . , Γn, Γn+1 ` that I(Γn+1) = f , so that I(A) = t.
Next we show the additional property that makes Γ1, . . . , Γn ` A strongly valid.
If no i has I(Γi) 6= t, then we are done. Otherwise, let i be the first position
where I(Γi) 6= t. If we would have I(Γi) 6= f , then this would contradict strong
unsatisfiability of the sequent Γ1, . . . , Γn, Γn+1 `, so that the proof is complete.

Using Theorem 1, the conclusion of a sequent can be moved to the left hand side,
after which it can be treated in the same way as the other premises. This has the
advantage that one can delete half of the rules from the sequent calculus, and it
avoids the burden of keeping track of the order of formulas spread between the
premises and the conclusions. In order to further simplify the calculus, we use
the reduction rules in Figure 1 and Figure 2. Figure 1 contains rules for pushing
negation inwards, while Figure 2 contains rules for pushing Prop inwards. Most
rules in Figure 1 look familiar, but their validity still needs to be checked in the
context of PCL. It can be checked (by case analysis) that for every interpretation
I, for each rule A ⇒ B in Figure 1 or Figure 2, we have I(A) = I(B), so that the
equivalences can be freely used in proofs. Figure 1 and Figure 2 ensure that ¬
or Prop never needs to be the main operator of a formula. The only cases where
Prop and ¬ cannot be eliminated are in formulas of form φ1(φ2(A)), where A
is an atom, φ2 is either Prop or nothing, and φ1 is either ¬ or nothing. Such
formulas play the same role as literals in first-order logic. One can either simplify
the sequent completely before proof search, or apply the rules ‘lazily,’ i.e. only
when ¬ or Prop stands in the way of a rule application.

Fig. 1. Reduction Rules for ¬

¬⊥ ⇒ >, ¬> ⇒ ⊥
¬¬A ⇒ A,

¬(〈A〉B) ⇒ [A]¬B, ¬([A]B) ⇒ 〈A〉¬B

¬(A ∧ B) ⇒ ¬A ∨ ¬B, ¬(A ∨ B) ⇒ ¬A ∧ ¬B

¬(A → B) ⇒ A ∧ ¬B, ¬(A ↔ B) ⇒ A ↔ ¬B

¬∀x F, ⇒ ∃x ¬F ¬∃x F ⇒ ∀x ¬F

Figure 3 contains the rules of the sequent calculus SeqPCL. Most rules proba-
bly look familiar, but there are pitfalls. For example, the rule for ∧-introduction
would be unsound if the second premise would be removed. It would then be pos-
sible that in some interpretation I = (D, f , t,v, []), one has I(Γ1) = t, I(A) = f ,
and I(B) 6∈ {f , t}. In that case the left premise would fail strongly, while the
conclusion would fail only weakly. Similarly, the rule for ∀-introduction would
be unsound if one would not keep a copy of ∀x P (x) in the premise before P (t).
It could happen that in some interpretation I, I(P (t)) = t, while at the same
time I(∀x P (x)) 6∈ {f , t}.

Fig. 2. Reduction Rules for Prop

Prop(>) ⇒ >
Prop(⊥) ⇒ >
Prop(¬A) ⇒ Prop(A)
Prop(Prop(A)) ⇒ >

Prop(A ∧ B) ⇒ Prop(A) ∧ Prop(B) (or 〈 Prop(A) 〉 Prop(B))
Prop(A ∨ B) ⇒ Prop(A) ∧ Prop(B) (or 〈 Prop(A) 〉 Prop(B))
Prop(A → B) ⇒ Prop(A) ∧ Prop(B) (or 〈 Prop(A) 〉 Prop(B))
Prop(A ↔ B) ⇒ Prop(A) ∧ Prop(B) (or 〈 Prop(A) 〉 Prop(B))

Prop(〈A〉B) ⇒ 〈 Prop(A) 〉(A → Prop(B))
Prop([A]B) ⇒ 〈 Prop(A) 〉(A → Prop(B))

Prop(∀x F) ⇒ ∀x Prop(F)
Prop(∃x F) ⇒ ∀x Prop(F)

Prop(t1 = t2) ⇒ >

If one would remove the A from the second premise in []-introduction, the
rule would still be sound, but become too weak for completeness. The problem
would show up when Prop(B) depends on A.

In contrast to standard first-order logic, a sequent of form Γ, A,¬A ` is
not automatically an axiom. It is possible that Γ ` fails weakly, or I(Γ) = t
and I(A) 6∈ {f , t}. Both cases are covered by requiring the additional sequent
Γ, ¬Prop(A) ` .

We will prove soundness of the rules for 〈 〉, ∨, and ∃. Most of the other
rules can be reduced to 〈 〉 and ∨, by using the equivalences in Figure 4. The
remaining rules can be checked by case analysis.

Theorem 2. Let Γ〈A〉B be a sequent of form Γ1, . . . , Γm, 〈A〉B, Γ ′
1, . . . , Γ

′
n `.

Let ΓA,B be the sequent Γ1, . . . , Γm, A, B, Γ ′
1, . . . , Γ

′
n `. Let I be an interpreta-

tion. Then Γ〈A〉B fails strongly in I iff ΓA,B fails strongly in I.

Proof. Assume that Γ〈A〉B fails strongly in I. This means that the first formula
F in Γ〈A〉B , for which I(F) 6= t, has I(F) = f .

– If F is among the Γi, then it is immediate that ΓA,B fails strongly in I.

– If F = 〈A〉B, then either I(A) = f , or (I(A) = t and I(B) = f). Since
I(Γ1) = · · · = I(Γm) = t, in both cases ΓA,B fails strongly in I.

– If F is among the Γ ′
j , then F also occurs in ΓA,B . We know that I(Γ1) = · · · =

I(Γm) = t. From the fact that I(〈A〉B) = t, follows that I(A) = I(B) = t.
Since we assumed that I(Γ ′

1) = · · · = I(Γ ′
j−1) = t, it follows that F is the

first formula in ΓA,B for which I(F) 6= t. Since I(F) = f , we know that ΓA,B

fails strongly in I.

Fig. 3. Rules of Seq
PCL

:

Rules for 〈 〉 and ∨

Γ1, A,B, Γ2 `

Γ1, 〈A〉 B, Γ2 `

Γ1, A, Γ2 ` Γ1, B, Γ2 `

Γ1, A ∨ B, Γ2 `

Rules for ∧ and []

Γ1, A, B, Γ2 ` Γ1, B, A, Γ2 `

Γ1, A ∧ B, Γ2 `

Γ1, ¬A, Γ2 ` Γ1, A, B, Γ2 `

Γ1, [A]B, Γ2 `

Rules for → and ↔

Γ1, ¬A, Γ2 Γ1, B, Γ2 `

Γ1, A → B, Γ2 `

Γ1, A, B, Γ2 ` Γ1, ¬B,¬A, Γ2 `

Γ1, A ↔ B, Γ2 `

Rules for ∀ and ∃

Γ1, ∀x P (x), P (t), Γ2 `

Γ1, ∀x P (x), Γ2 `

Γ1, P (x), Γ2 `

Γ1, ∃x P (x), Γ2 `

(In the ∀-rule, t must be a term. In the ∃-rule x must be not free in Γ1 or Γ2.)
Equivalence If A ⇒ B is an instance of one of the rules in figure 2 or figure 1, then

the following derivation is possible:

Γ1, B, Γ2 `

Γ1, A, Γ2 `

Axioms

Γ, ¬Prop(A) `

Γ, A,¬A `

Γ, ¬Prop(A) `

Γ,¬A, A ` ⊥ `

Weakening

Γ1,¬Prop(A) ` Γ1, Γ2 `

Γ1, A, Γ2 `

Γ `

Γ, A `

Γ1, Γ2 `

Γ1,>, Γ2 `

(In the first two rules, A can be an arbitrary formula.)
Contraction, Cut

Γ1, A, Γ2, A, Γ3 `

Γ1, A, Γ2, Γ3 `

Γ1, ¬A ` Γ1, A, Γ2 `

Γ1, Γ2 `

(A can be an arbitrary formula.)
Equality

Prop(A), A, t1 = u1, . . . , tn = un,¬A′ ` t1 = u1, . . . , tn = un, t 6= u `

In the first axiom, it must be the case that A, t1 = u1, . . . , tn = un |= A′ in
the standard theory of equality. In the second axiom, it must be the case that
t1 = u1, . . . , tn = un ` t = u in the standard theory of equality.

Fig. 4. Reduction of remaining rules to 〈 〉 and ∨

∧ A ∧ B ⇒ (〈A〉B) ∨ (〈B〉A)
[] [A]B ⇒ ¬A ∨ (〈A〉B)
→ A → B ⇒ ¬A ∨ B

↔ A ↔ B ⇒ (〈A〉B) ∨ (〈¬A〉¬B)

> 〈A〉> ⇒ A

> 〈>〉A ⇒ A

∀ ∀x P (x) ⇒ 〈 ∀x P (x) 〉 P (t)

For the other direction, assume that ΓA,B fails strongly in I. Let F be the first
formula in ΓA,B for which I(F) 6= t. We have I(F) = f .

– If F is among the Γi, then it is immediate that Γ〈A〉B fails strongly in I.
– If F = A, then I(〈A〉B) = f , and I(Γ1) = · · · = I(Γm) = t, so that Γ〈A〉B

fails strongly in I at formula A.
– If F = B, then we know that I(A) = t, so that I(〈A〉B) = f . Since

I(Γ1) = · · · I(Γm) = t, it follows that Γ〈A〉B fails strongly in I at formula B.
– If F is among the Γ ′

j , then F also occurs in Γ〈A〉B , so that it is sufficient to
show that there is no formula F ′ before F in Γ〈A〉B , s.t. I(F ′) 6= t. The only
candidate is 〈A〉B, because all other formulas were copied from ΓA,B . But
since we know that I(A) = I(B) = t, it follows that I(〈A〉B) = t.

Theorem 3. Let ΓA∨B be a sequent of form Γ1, . . . , Γm, A ∨ B, Γ ′
1, . . . , Γ

′
n `.

Let ΓA = Γ1, . . . , Γm, A, Γ ′
1, . . . , Γ

′
n `, and let ΓB = Γ1, . . . , Γm, B, Γ ′

1, . . . , Γ
′
n `.

Let I be an interpretation. The sequent ΓA∨B fails strongly in I iff both of ΓA

and ΓB fail strongly in I.

Proof. Because of space restriction, we do some handwaving. Using Theorem 2
and Figure 4, we can collapse Γ1, . . . , Γm and Γ ′

1, . . . , Γ
′
n into single formulas of

form C1 = 〈Γ1〉 · · · 〈Γm〉> and C2 = 〈Γ ′
1〉 · · · 〈Γ

′
n〉>.

After the replacement, the proof reduces to showing that C1, A∨B, C2 ` fails
strongly in I iff both of C1, A, C2 ` and C1, B, C2 ` fail strongly in I. This can
be checked by case analysis. Each of C1, A, B, C2 can be either f , t or 6∈ {f , t}.
This results in 34 = 81 cases, which can be checked. 1

Theorem 4. Let Γ∃ be a sequent of form Γ1, . . . , Γm, ∃x P (x), Γ ′
1, . . . , Γ

′
n `.

Let Γx be the sequent Γx = Γ1, . . . , Γm, P (x), Γ ′
1, . . . , Γ

′
n `. Assume that x is

not free in any of the formulas Γ1, . . . , Γm, Γ ′
1, . . . , Γ

′
n.

Let I = (D, f , t,v, []) be an arbitrary interpretation. Then Γ∃ fails strongly
in I iff for every d ∈ D, the sequent Γx fails strongly in Ix

d = (D, f , t,v, []xd).

Proof. In the proof, we make use of the fact that I(Γi) = Ix
d (Γi) and I(Γ ′

j) =
Ix
d (Γ ′

j), because x is not free in Γi, Γ
′
j .

Assume that Γ∃ fails strongly in I. This means that for the first formula F
in Γ∃ with I(F) 6= t, one has I(F) = f .

1 The cases have been checked by a computer program, together with all cases for the
reductions in Figure 1, 2 and 4

– If F is one of the Γi, then I(Γi) = Ix
d (Γi) = f , and for all i′, (1 ≤ i′ ≤

i), I(Γi′) = Ix
d (Γi′) = t, so that Γx fails strongly at Γi in every Ix

d .
– If F is ∃x P (x), then the fact that I(∃x P (x)) = f , implies that for every

d ∈ D, Ix
d (P (x)) = f . Since for every i, I(Γi) = Ix

d (Γi) = t, it follows
that Γx fails strongly at formula P (x) in every interpretation Ix

d .
– If F is one of the Γ ′

j , then we know that for every d ∈ D, I(Γ1) = Ix
d (Γ1) =

· · · = I(Γm) = Ix
d (Γm) = t. It can be seen from Definition 4 that

I(∃x P (x)) = t implies that for every d ∈ D, either Ix
d (P (x)) = f , or

Ix
d (P (x)) = t. If Ix

d (P (x)) = f , then Γx strongly fails at P (x) in Ix
d .

Otherwise, we have Ix
d (P (x)) = t and I(Γ ′

1) = Ix
d (Γ ′

1) = · · · = I(Γ ′
j−1) =

Ix
d (Γ ′

j−1) = t, and I(Γj) = Ix
d (Γj) = f , so that Γx fails strongly at Γ ′

j in Ix
d

For the other direction, we use contraposition, so assume that Γ∃ does not fail
strongly in I. We show that there exists a d ∈ D, s.t. Γx does not fail strongly
in Ix

d . We distinguish the following cases:

– The first formula F with I(F) 6= t is among the Γi and I(Γi) 6= f . Since for
all i, (1 ≤ i ≤ m), I(Γi) = Ix

d (Γi), the sequent Γx does not fail strongly in
any Ix

d .
– The first formula F with I(F) 6= t is ∃x P (x), and I(∃x P (x)) 6= f . It

follows from Definition 4 that there is a d ∈ D, s.t. Ix
d (P (x)) 6∈ {f , t}. In

the corresponding Ix
d , the sequent Γx does not fail strongly.

– The first formula F for which I(F) 6= t is among the Γ ′
j , and I(Γ ′

j) 6= f .
Since I(∃x P (x)) = t, there exists a d ∈ D, s.t. Ix

d (P (x)) = t. In Ix
d , we

have I(Γ1) = Ix
d (Γ1) = · · · = I(Γm) = Ix

d (Γm) = t, and I(Γ ′
1) = Ix

d (Γ ′
1) =

· · · = I(Γ ′
j−1) = Ix

d (Γ ′
j−1) = t, so that Γx does not fail strongly in Ix

d .
– There is no formula F for which I(F) 6= t in Γ∃. This case is analogeous to

the previous case.

2 Completeness

In the previous section we introduced SeqPCL and proved its soundness. In the
rest of the paper, we will give an outline of the completeness proof. If there
would exist no ∀-quantifier, we would already have the completeness proof at
this point. The calculus has sufficiently many equivalence preserving rules: For
every interpretation I, the conclusion of the rule fails strongly in I iff all premises
of the rule strongly fail in I. Using the equivalence preserving rules, it is possible
to break down the goal sequent into a set of sequents that contain only (negations
of) (Props of) atoms. These simple sequents are either axioms, or there exists a
model in which they do not fail strongly. By the equivalence property, this implies
that we either have a proof of the original sequent, or a counter interpretation.

In order to include ∀ in the completeness proof, we would like to proceed in a
standard way: Allow each ∀-quantifier to have some fixed set of instances. If no
proof can be constructed, then grant each ∀-quantifier one instance more. This
process either results in a proof, or it leads to an increasing sequence of sets of
atoms from which one can read of an interpretation in the limit.

Unfortunately, there is a problem with this approach, which is caused by the
fact that in most cases the limit will be infinite. We want to show that the limit
sequent does not fail strongly in the limit interpretation I (and that none of
the sequents on the way fails strongly in I), but we have no concept of strong
failure for infinite sequents. One possible solution would be to introduce infinite
sequents. Infinite sequents can be defined by labelling a well-founded set with
formulas. The sequent fails strongly if every element in the well-founded set that
is labelled with a non-true formula, has an element before it, that is labelled with
a false formula. Finite sequents would correspond to linearly ordered, finite sets.
It turns out that there is a simpler approach, which avoids introducing special
notions for infinite sequents:

Definition 8. Let Γ = Γ1, . . . , Γn ` be a sequent. We say that Γ is in Prop
normal form (PNF) if for every Γi, either (1) Γi is of form t1 = t2, t1 6=
t2, Prop(A) or ¬Prop(A), or (2) there is a j < i, s.t. Γj has form Prop(Γi).

Lemma 1. Let Γ ` be a sequent in PNF. Let I be an interpretation. Then Γ `
does not fail strongly in I iff for every formula F in Γ, I(F) = t.

Theorem 5. If SeqPCL is complete for sequents in PNF, then it is complete for
all sequents.

Proof. Assume that SeqPCL is complete for sequents in PNF. Let Γ ` be an
arbitrary sequent. Write Γ ` in the form Γ1, . . . , Γn `. Let #Γ ` be the number
of violations of Definition 8 in Γ `. (This is the number of Γi that are not of
form t1 = t2, t1 6= t2, Prop(A), ¬Prop(A), and for which there also exists no
j < i with Γj = Prop(Γi).)

If #Γ ` = 0, then Γ ` is in PCL, so that we are done. Otherwise, assume
that the first violation of Definition 8 occurs on position i. This implies that the
sequent S1 = Γ1, . . . , Γi−1,¬Prop(Γi) ` is in PNF. If S1 has no proof, then by
PNF-completeness, we know that there exists an interpretation I, in which S1

does not fail strongly. By Lemma 1, I(Γ1) = · · · = I(Γi−1) = I(¬Prop(Γi)) = t,
so that I(Prop(Γi)) = f . This implies that the sequent Γ1, . . . , Γi−1, Γi, . . . , Γn `
fails in I, but not strongly. As a consequence, we have completeness for this case.

If S1 does have a proof, then we consider the sequent
S2 = Γ1, . . . , Γi−1, Prop(Γi), Γi, . . . , Γn `. Clearly, #S2 = #(Γ `) − 1, so that
we can assume completeness for S2.

If S2 has no proof, then there exists an interpretation I, in which S2 does
either not fail at all, or it fails but not strongly. If S2 does not fail in I, then
Γ ` also does not fail, and we are done. Otherwise, consider the first formula F
in S2, for which I(F) 6= t. If F were among the Γ1, . . . , Γi−1, this would imply
that the sequent S2 fails strongly, due to the fact that S1 has a proof. From the
provability of S1 follows, that F cannot be Prop(Γi). If F would be Γi, this would
imply that I(Prop(Γi)) = f , which contradicts the fact that S2 is provable. So
it must be the case that F is among Γi+1, . . . , Γn. But this implies that Γ ` also
fails non strongly in I, so that we have completeness in this case as well.

Finally assume that S2 has a proof. In that case, we can combine the proofs
of S1 and S2 into a proof of Γ ` as follows:

Γ1, . . . , Γi−1, ¬Prop(Γi) ` Γ1, . . . , Γi−1, Prop(Γi), Γi, . . . , Γn `

Γ1, . . . , Γi−1, Γi, . . . , Γn `
(cut).

The fact that we can restrict our attention to sequents in PNF, simplifies the
completeness proof quite a lot. By Lemma 1, we know that we are looking either
for a proof, or an interpretation that makes all atoms in the sequent true. Since
this does not rely on order anymore, we can use standard techniques to construct
the limit of the sequents in the failed proof attempt. We still have to show two
things, but they turn out unproblematic: (1) It does not happen that, during
proof search for a sequent in PNF, one needs to make use of a sequent that is
not in PNF. (2) All formulas in the orginal sequent are true in the resulting
interpretation. In order to do this, we show that a nonsucceeding proof attempt
converges towards a saturated set, which is defined as follows:

Definition 9. Let Σ be a set of formulas. We call Σ saturated if it has the
following properties:

– If A ∈ Σ, and A is not of form t1 = t2, t1 6= t2, Prop(B), or ¬Prop(B),
then Prop(A) ∈ Σ.

– ⊥ 6∈ Σ.
– There exist no terms t, u, no n ≥ 0, no sequence of terms t1, u1, . . . , tn, un,

s.t. {t1 = u1, . . . , tn = un, t 6= u} ⊆ Σ, and t1 = u1, . . . , tn = un ` t = u in
the standard theory of equality.

– There exist no atoms A, A′, no n ≥ 0, no sequence of terms t1, u1, . . . , tn, un,
s.t. {A, t1 = u1, . . . , tn = un, ¬A′} ⊆ Σ, and A, t1 = u1, . . . , tn = un ` A′

in the standard theory of equality.
– If { Prop(A ∨ B), A ∨ B } ⊆ Σ, then either

{Prop(A), A} ⊆ Σ, or {Prop(B), B} ⊆ Σ.
– If { Prop(〈A〉B), 〈A〉B } ⊆ Σ, then {Prop(A), Prop(B), A, B} ⊆ Σ.
– If { Prop(∃x P (x)), ∃x P (x) } ⊆ Σ, then there exists a term t, s.t.

{ Prop(P (t)), P (t) } ⊆ Σ.
– If { Prop(∀x P (x)), ∀x P (x) } ⊆ Σ, then for every term t that can be

formed from the signature of Σ, we have { Prop(P (t)), P (t) } ⊆ Σ.
– For every instance A ⇒ B of a rule in Figure 1 or Figure 4, if

{Prop(A), A} ⊆ Σ, then {Prop(B), B} ⊆ Σ.
– For every instance Prop(A) ⇒ B of a rule in Figure 2, if Prop(A) ∈ Σ, but

A 6∈ Σ, then B ∈ Σ.

Note that, by taking n = 0 in the fourth case, the definition of saturated set
implies that Σ does not contain a complementary pair of atoms A,¬A. Since
our aim is to prove completeness, we need a proof search strategy that converges
towards a saturated set in the limit. In order to obtain a saturated set, it is
necessary to preserve PNF during proof search. If, for example, one has a sequent
of form Γ1, Prop(A ∧ B), A ∧ B, Γ2 ` and tries to prove it from Γ1, Prop(A ∧

B), A, B, Γ2 `, then the new sequent is not in PNF anymore. In this case we can
continue proof search by replacing Prop(A∧B) by 〈Prop(A)〉Prop(B), which in
turn can be replaced by Prop(A), Prop(B), which is in PNF again. Figures 5,
6, 7 and 8 show that, for the operators 〈 〉,∨, ∀ and ∃, it is always possible to
continue proof search with sequents in PNF. All of the remaining cases can be
reduced to the cases for 〈 〉 and ∨, using the equivalences in Figures 1, 2 and 4.

In Figure 5, the leftmost sequent is provable, because it is in PNF, and it
contains the complementary pair A,¬A. Hence, it is sufficient to continue proof
search with the rightmost sequent, which is also in PNF.

Fig. 5. Preservation of PNF under 〈 〉-intro

(provable)

Γ1, Prop(A),¬A, A, B, Γ2 ` Γ1, Prop(A), Prop(B), A, B, Γ2 `

(∨-intro)

Γ1, Prop(A), ¬A ∨ Prop(B), A, B, Γ2 `

(〈 〉-intro, Equiv Figure 4)

Γ1, 〈 Prop(A) 〉 (A → Prop(B)), 〈A〉B, Γ2 `

(Equiv Figure 2)

Γ1, Prop(〈A〉B), 〈A〉B, Γ2 `

Fig. 6. Preservation of PNF under ∨-intro

Γ1, Prop(A), Prop(B), A, Γ2 ` Γ1, Prop(A), Prop(B), B, Γ2 `

(∨-intro)

Γ1, Prop(A), Prop(B), A ∨ B, Γ2 `

(Equiv Figure 2, 〈 〉-intro)

Γ1, Prop(A ∨ B), A ∨ B, Γ2 `

Figure 7 shows how PNF can be preserved when instantiating a ∀. In the middle,
the proof splits at the cut application. The first formula of the left branch is
provable, because it contains the complementary pair Prop(P (t)),¬Prop(P (t)),
Γ1 is in PNF, and the remaining formulas ∀x Prop(P (x)), Prop(P (t)), ∀x P (x)
can be easily proven Prop in their respective contexts. The right premise of the
cut application is in PNF, and has the formulas Prop(P (t)), P (t) added. Figure 8
branches at the weakening step, and its first premise is provable.
It remains to extract an interpretation IΣ = (DΣ , fΣ , tΣ,vΣ , []Σ) from the
saturated set Σ. This can be done as follows:

– Assume two designated objects f , t that are not in the signature of Σ. They
will represent the truth values. Let TΣ be the set of terms that can be

Fig. 7. Preservation of PNF under ∀-intro

Γ1,∀x Prop(P (x)), Prop(P (t)),∀x P (x), ¬Prop(P (t)) `

(∀-intro)

Γ1, ∀x Prop(P (x)),∀x P (x), ¬Prop(P (t)) `

(Equiv Figure 2)

Γ1, Prop(∀x P (x)),∀x P (x), ¬ Prop(P (t)) `

Γ1, Prop(∀x P (x)),∀x P (x), Prop(P (t)), P (t), Γ2 `

(cut)

Γ1, Prop(∀x P (x)),∀x P (x), P (t), Γ2 `

∀-intro

Γ1, Prop(∀x P (x)),∀x P (x), Γ2 `

formed from the signature of Σ. Let ≡ be the smallest congruence relation
on TΣ ∪ {f , t}, s.t.
• for all t1, t2 ∈ TΣ, if (t1 = t2) ∈ Σ, then t1 ≡ t2,
• for all t ∈ TΣ , if both of Prop(t), t ∈ Σ, then t ≡ t,
• for all t ∈ TΣ , if Prop(t) ∈ Σ, but t 6∈ Σ, then t ≡ f .

The domain DΣ of IΣ is defined as (T ∪ {f , t})/ ≡ .
– fΣ is the element of DΣ that contains f .
– tΣ is the element of DΣ that contains t.
– The choice of vΣ is not important, so we simply select an arbitrary total

order on DΣ\{fΣ, tΣ}.
– The function []Σ is defined in such a way that for every t ∈ TΣ , the inter-

pretation IΣ(t) is the equivalence class of ≡ in which t falls.

It remains to show that for every formula A, A ∈ Σ ⇔ IΣ(A) = t. This can be
proven by structural induction on A using the properties in Definition 9.

Theorem 6. Sequent calculus SeqPCL is complete: If a sequent Γ ` is not prov-
able in SeqPCL, then there exists an interpretation I in which Γ ` does not fail
strongly.

3 Conclusions, Future Work

We have introduced a variant of first-order logic that supports partial functions
and explicit type reasoning (PCL). We have introduced a semantics for PCL,
which captures the intuitive meaning of partiality in a natural way. One of the
motivations for introducing geometric resolution in [4] was the expectation that
geometric resolution will be better at handling partial functions than standard
automated theorem proving techniques. The current paper results from attempts
to extend geometric resolution with partial functions. The next step is to extend
geometric resolution (and its implementation Geo [3]), so that it can deal with
PCL. On the theoretical side, we would like to know whether SeqPCL admits
cut elimination.

Fig. 8. Preservation of PNF under ∃-intro

Γ1, ¬Prop(∀x Prop(P (x)) ` Γ1, Prop(P (y)), P (y), Γ2 `

(weakening)

Γ1, ∀x Prop(P (x)), Prop(P (y)), P (y), Γ2 `

(∀-intro)

Γ1, ∀x Prop(P (x)), P (y), Γ2 `

(∃-intro)

Γ1, ∀x Prop(P (x)),∃x P (x), Γ2 `

(Equiv Figure 2)

Γ1, Prop(∃x P (x)),∃x P (x), Γ2 `

Part of this research was funded by the ‘Programme for the Advancement of
Computer Science’ of the city of Wroc law.

References

1. Sergey Berezin, Clark Barrett, Igor Shikanian, Marsha Chechik, Arie Gurfinkel,
and David Dill. A practical approach to partial functions in CVC Lite. In Selected
Papers from the Workshop on Disproving and the Second International Workshop
on Pragmatics of Decision Procedures (PDPAR 04), volume 125 of Electronic Notes
in Theoretical Computer Science, pages 13–23. Elsevier, July 2005.

2. Ádám Darvas, Farhad Mehta, and Arsenii Rudich. Efficient well-definedness check-
ing. In Alessandro Armado, Peter Baumgartner, and Gilles Dowek, editors, Inter-
national Joint Conference on Automated Reasoning (IJCAR) 2008, volume 5195 of
LNAI, pages 100–115. Springer Verlag, 2008.

3. Hans de Nivelle. Theorem prover Geo 2007F. Can be obtained from the author’s
homepage, September 2007.

4. Hans de Nivelle and Jia Meng. Geometric resolution: A proof procedure based
on finite model search. In John Harrison, Ulrich Furbach, and Natarajan Shankar,
editors, International Joint Conference on Automated Reasoning 2006, volume 4130
of Lecture Notes in Artificial Intelligence, pages 303–317, Seattle, USA, August 2006.
Springer.

5. William M. Farmer. Mechanizing the traditional approach to partial functions. In
W. Farmer, M. Kerber, and M. Kohlhase, editors, Proceedings of the Workshop on
the Mechanization of Partial Functions (associated to CADE 13), pages 27–32, 1996.

6. William M. Farmer and Joshua D. Guttman. A set theory with support for partial
functions. Studia Logica, 66:59–78, 2000.

7. Reiner Hähnle. Many-valued logic, partiality, and abstraction in formal specification
languages. Logic Journal of the IGPL, 13(4):415–433, 2005.

8. Manfred Kerber and Michael Kohlhase. A mechanization of strong Kleene logic for
partial functions. In Automated Deduction - CADE 12, volume 814 of LNAI, pages
371–385. Springer Verlag, June 1994.

9. Farhad Mehta. A practical approach to partiality - a proof based approach. In
Shaoying Liu and Tom Maibaum, editors, International Conference on Formal En-
gineering Methods, (ICFEM), volume 5256 of LNCS, pages 238–257. Springer, 2008.

