
Implementing the Clausal Normal Form

Transformation with Proof Generation

Hans de Nivelle

Max Planck Institut für Informatik

Stuhlsatzenhausweg 85

66123 Saarbrücken, Germany

nivelle@mpi-sb.mpg.de

Abstract. We explain how we intend to implement the clausal normal

form transformation with proof generation. We present a convenient data

structure for sequent calculus proofs, which will be used for representing

the generated proofs. The data structure allows easy proof checking and

generation of proofs. In addition, it allows convenient implementation of

proof normalization, which is necessary in order to keep the size of the

generated proofs acceptable.

1 Introduction

In [2], a method for generating explicit proofs from the clausal normal form
transformation was presented, which does not make use of choice axioms. It is
our intention to implement this method. In this paper we introduce the data
structure for the representation of proofs that we intend to use, and we give
a general algorithm scheme, with which one can translate formulas and obtain
correctness proofs at the same time.

In [2], natural deduction was used for showing that it is in principle possible to
generate explicit proofs. It is however in practice better to use sequent calculus,
because sequent calculus allows proof reductions that reduce the size of generated
proofs. In order to be able to keep the sizes of the resulting proofs acceptable,
it is necessary to normalize proofs in such a way that repeated building up of
contexts is avoided.

In the preceeding paper [1], which was still proposing to use choice axioms,
it was explained how to do this in type theory. An intermediate calculus was in-
troduced, called the replacement calculus, which allows for proof normalization.
After normalization, the resulting proof could be translated into type theory
through a simple replacement schema. If one uses sequent calculus instead of
natural deduction, the standard reductions of sequent calculus can do the proof
normalization. It turns out that proof normalization in the replacement calculus
corresponds to a restricted form of cut elimination in sequent calculus. There-
fore, if one uses sequent calculus instead of natural deduction, the replacement
calculus can be omitted alltogether.

In the next section we introduce sequent calculus. After that, we introduce
the data structure that we will use for representing sequent calculus proofs. Then

we will give a general scheme for translating formulas and generating proofs at
the same time. In the last section, we show that our sequent proof data structure
is convenient for implementing the kind of proof reduction that we need.

2 Sequent Calculus

Definition 1. A sequent is an object of form Γ ` ∆, where both Γ and ∆ are
multisets.

We give the rules of sequent calculus. We assume that α-equivalent formulas
are not distinguished. We also give equality rules, although equality plays no
rule in the CNF-transformation.

(axiom)
Γ, A ` ∆, A

(cut)
Γ, A ` ∆ Γ ` ∆, A

Γ ` ∆

Structural Rules:

(weakening left)
Γ ` ∆

Γ, A ` ∆
(weakening right)

Γ ` ∆

Γ ` ∆, A

(contraction left)
Γ, A, A ` ∆

Γ, A ` ∆
(contraction right)

Γ ` ∆, A, A

Γ ` ∆, A

Rules for the truth constants:

(>-left)
Γ ` ∆

Γ,> ` ∆
(>-right)

Γ ` ∆,>

(⊥-left)
Γ,⊥ ` ∆

(⊥-right)
Γ ` ∆

Γ ` ∆,⊥

Rules for ¬:

(¬-left)
Γ ` ∆, A

Γ,¬A ` ∆
(¬-right)

Γ, A ` ∆

Γ ` ∆,¬A

Rules for ∧,∨,←,↔:

(∧-left)
Γ, A, B ` ∆

Γ, A ∧ B ` ∆
(∧-right)

Γ ` ∆, A Γ ` ∆, B

Γ ` ∆, A ∧ B

(∨-left)
Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨ B ` ∆
(∨-right)

Γ ` ∆, A, B

Γ ` ∆, A ∨ B

(→ -left)
Γ ` ∆, A Γ, B ` ∆

Γ, A→ B ` ∆
(→ -right)

Γ, A ` ∆, B

Γ ` ∆, A→ B

(↔ -left)
Γ, A→ B, B → A ` ∆

Γ, A↔ B ` ∆

(↔ -right)
Γ ` ∆, A→ B Γ ` ∆, B → A

Γ ` ∆, A↔ B

Rules for the quantifiers:

(∀-left)
Γ, P [x := t] ` ∆

Γ, ∀x P ` ∆
(∀-right)

Γ ` ∆, P [x := y]

Γ ` ∆, ∀x P

(∃-left)
Γ, P [x := y] ` ∆

Γ, ∃x P ` ∆
(∃-right)

Γ ` ∆, P [x := t]

Γ ` ∆, ∃x P

The t is an arbitrary term. The y is a variable which is not free in Γ, ∆, P

Rules for equality:

(refl)
Γ ` ∆, t ≈ t

(repl-left)
t1 ≈ t2, Γ [t1] ` ∆

t1 ≈ t2, Γ [t2] ` ∆
(repl-right)

t1 ≈ t2, Γ ` ∆[t1]

t1 ≈ t2, Γ ` ∆[t2]
.

The last rules mean: If t1 ≈ t2 appears among the premisses, then an arbi-
trary occurrence of t1 can be replaced by t2. The replacement can take place
either on the left or on the right. Only one replacement at the same time is
possible.

3 Proof Trees

We introduce a concise sequent calculus format, which allows for easy proof
checking and implementation of proof reductions. It is closely related to the
embedding of sequent calculus in LF, which is introduced in [5].

We first prove a simple lemma that shows that one should avoid explicitly
mentioning the formulas occurring in the proof:

Lemma 1. Consider the sequents (¬¬)nA ` A, for n ≥ 0.

If one has a proof representation method that explicitly mentions the formulas
in a sequent, then the proofs have size O(n2).

Proof. Because one will have to represent all subformulas
A,¬A, (¬)2A, (¬)3A, . . . , (¬¬)nA.

Nevertheless, the proof has a length of only n steps. If one does not mention
the formulas, one can obtain a representation of size n. In our representation,
we avoid explicitly mentioning formulas by assigning labels to them. Whenever
a new formula is constructed, it will be clear what the new formula is, from the
way it is constructed, so that we will not have to mention it.

Definition 2. We redefine a sequent as an object of form Γ ` ∆, where both
Γ and ∆ are sets of labelled formulas. So we have Γ = {α1:A1, . . . , αp:Ap} and
∆ = {β1:B1, . . . , βq:Bq}, where αi = αj implies i = j and βi = βj implies i = j.

In case there is no A′, s.t. α:A′ ∈ Γ, the notation Γ +α:A denotes Γ ∪{α:A}.
Otherwise, Γ + α:A is undefined. (even when A = A′)

In case there is an A, s.t. α:A ∈ Γ, the notation Γ − α denotes Γ\{α:A}.
Otherwise Γ − α is not defined.

In case there is an A, s.t. α:A ∈ Γ, the notation Γ [α] denotes A. Otherwise
Γ [α] is not defined.

For ∆, we define ∆ + β:B, ∆− β, ∆[β] in the same way as for Γ.

Proofs are checked top-down, i.e. from the goal sequent towards the axioms.
For each node in the proof tree, the node states the label of the conslusion in
the derived sequent, and what labels the premisses should receive in the child
sequents. During checking, the conclusion is removed from the sequent (if it
exists, and has the right form), and replaced by the children, after which proof
checking continues.

Definition 3. We recursively define proof trees and when a proof tree accepts
a labelled sequent. In the following list, we implicitly assume that α, β are labels.
We will omit the definedness conditions. So we will assume that ∆[α] = ∆[β]
means: F [α] and F [β] are both defined and F [α] = F [β].

– ax(α, β) is a proof tree. It is a proof of Γ ` ∆, if Γ [α] is an α-variant of
∆[β].

– If π1, π2 are proof trees, and A is a formula, then cut(A, π1, α, π2, β) is also
a proof tree. It is a proof of Γ ` ∆ if π1 is a proof of Γ + α:A ` ∆ and π2

is a proof of Γ ` ∆ + β:A.

– If π is a proof tree, then weakenleft(α, π) is also a proof tree. It is a proof of
Γ ` ∆ if π is a proof of Γ − α ` ∆.

– If π is a proof tree, then weakenright(β, π) is also a proof tree. It is a proof
of Γ ` ∆ if π is a proof of Γ ` ∆− β.

– If π is a proof tree, then contrleft(α1, π, α2) is also a proof tree. It is a proof
of Γ ` ∆ if π is a proof of Γ + α1:A[α2] ` ∆.

– If π is a proof tree, then contrright(β1, π, β2) is also a proof tree. It is a proof
of Γ ` ∆ if π is a proof of Γ ` ∆ + β1:∆[β2].

– If π is a proof tree, then trueleft(α, π) is also a proof tree. It is a proof of
Γ ` ∆ if Γ [α] = >, and π is a proof of Γ − α ` ∆.

– trueright(β) is a proof tree. It is a proof of Γ ` ∆ if ∆[β] = >.
– falseleft(α) is a proof tree. It is a proof of Γ ` ∆ if Γ [α] = ⊥.
– falseright(β, π) is a proof tree. It is a proof of Γ ` ∆ if ∆[β] = ⊥ and π is a

proof of Γ ` ∆− β.
– If π is a proof tree, then negleft(α, π, β) is also a proof tree. It is a proof of

Γ ` ∆ if Γ [α] has form ¬A, and π is a proof of Γ ` ∆ + β:A.
– If π is a proof tree, then negright(β, π, α) is also a proof tree. It is a proof of

Γ ` ∆ if ∆[β] has form ¬A, and π is a proof of Γ + α:A ` ∆.
– If π is a proof tree and α1 6= α2, then andleft(α, π, α1, α2) is also a proof

tree. It is a proof of Γ ` ∆ if Γ [α] has form A ∧B, and
π is a proof of (Γ − α) + α1:A + α2:B ` ∆.

– If π1, π2 are proof trees, then andright(β, π1, β1, π2, β2) is also a proof tree.
It is a proof of Γ ` ∆ if ∆[β] has form A ∧ B,

π1 is a proof of Γ ` (∆− β) + β1:A, and
π2 is a proof of Γ ` (∆− β) + β2:B.

– If π1, π2 are proof trees, then orleft(α, π1, α1, π2, α2) is also a proof tree. It
is a proof of Γ ` ∆ if ∆[α] has form A ∨ B,

π1 is a proof of (Γ − α) + α1:A ` ∆, and
π2 is a proof of (Γ − α) + α2:B ` ∆.

– If π is a proof tree and β1 6= β2, then orright(β, π, β1, β2) is also a proof tree.
It is a proof of Γ ` ∆ if ∆[β] has form A ∨ B, and

π is a proof of Γ ` (∆− β) + β1:A + β2:B.
– If π is a proof tree, then impliesleft(α, π1, β1, π2, α2) is also a proof tree. It

is a proof of Γ ` ∆ if Γ [α] has form A→ B, and
π1 is a proof of (Γ − α) ` ∆ + β1:A, and
π2 is a proof of (Γ − α) + α2:B ` ∆.

– If π is a proof tree and α1 6= β2, then impliesright(β, π1, α1, π2, β2) is also a
proof tree. It is a proof of Γ ` ∆ if ∆[β] has form A→ B,

π1 is a proof of Γ + α1:A ` (∆− β) + β2:B.
– If π is a proof tree and α1 6= α2, then equivleft(α, π, α1, α2) is also a proof

tree. It is a proof of Γ ` ∆ if Γ [α] has form A↔ B, and
π is a proof of (Γ − α) + α1: (A→ B) + α2: (B → A) ` ∆.

– If π1, π2 are proof trees, then equivright(β, π1, β1, π2, β2) is also a proof tree.
It is a proof of Γ ` ∆ if ∆[β] has form A↔ B,

π1 is a proof of Γ ` (∆− β) + β1: (A→ B), and
π2 is a proof of Γ ` (∆− β) + β2: (B → A).

– If π is a proof tree and t is a term, then forallleft(α, π, α1, t) is also a proof
tree. It is a proof of Γ ` ∆ if Γ [α] has form ∀x P and π is a proof of
(Γ − α) + α1:P [x := t] ` ∆.

– If π is a proof tree and y is a variable, then forallright(β, π, β1, y) is also a
proof tree. It is a proof of Γ ` ∆ if ∆[β] has form ∀x P,

y is not free in Γ, ∆ or P, and
π is a proof of Γ ` (∆− β) + β1:P [x := y].

– If π is a proof tree and y is a variable, then existsleft(α, π, α1, y) is also a
proof tree. It is a proof of Γ ` ∆ if Γ [α] has form ∃x P,

y is not free in Γ, ∆ or P, and
π is a proof of (Γ + α) + α1:P [x := y] ` ∆

– If π is a proof tree and t is a term, then existsright(β, π, β1, t) is also a proof
tree. It is a proof of Γ ` ∆ if ∆[β] has form ∃x P and

π is a proof of Γ ` (∆− β) + β1:P [x := t].
– If t is a term, then eqrefl(β, t) is a proof tree. It is a proof of Γ ` ∆ if

∆[β] = (t ≈ t).
– If π is a proof tree and ρ is a position, then replleft(α1, α2, π, ρ, α3) is also

a proof tree. It is a proof of Γ ` ∆ if Γ [α1] has form t1 ≈ t2, if Γ [α2] has
form Aρ[t2], and π is a proof of (Γ − α2) + α3:Aρ[t1] ` ∆.

– If π is a proof tree and ρ is a position, then replright(α, β1, π, ρ, β2) is also a
proof tree. It is a proof of Γ ` ∆ if Γ [α] has form t1 ≈ t2, if ∆[β1] has form
Bρ[t1], and π is a proof of Γ ` (∆− β1) + β2:Bρ[t2].

As an example, consider the following proof:

α1:A, α2:B ` β1:B α1:A, α2:B ` β2:A

α1:A, α2:B ` β:B ∧ A

α:A ∧ B ` β:B ∧ A

It can be represented by the following proof term:

andleft(α, andright(β, ax(α2, β1), β1, ax(α1, β2), β2), α1, α2).

Following [5], we consider a rule as a binder that binds the labels that it
introduces in the subproofs where the label is introduced. For example,
andleft(α, π, α1, α2) introduces the labels α1, α2 in π. Therefore, it can be viewed
as binding any occurrences of α1, α2 in π. Likewise, we consider
forallright(β, π, β1, y), as a binder that binds any occurrences of y in π.

Viewing the rules as binders makes it possible to define a notion of α-
equivalence of proofs. This has the advantage that label conflicts can be resolved
by renaming labels. Without α-equivalence, a rule introducing some formula with
label α cannot be applied on a labelled sequent already containing α. However,
if we use α-equivalence, we can rename α into a new label α′ and continue proof
checking. As an example, the proof tree given a few lines above would not be a
proof of α:A ∧ B, α1:A ` β:B ∧ A. Using α-equivalence, we can replace α1 in
the proof tree by some α′

1 and the sequent will be accepted. The main advantage
of this is that proof checking becomes monotone:

Lemma 2. If π is a proof tree, which is a proof of some labelled sequent Γ ` ∆,

and Γ ⊆ Γ ′, ∆ ⊆ ∆′, then π is also a proof of Γ ′ ` ∆′.

The following property is important for proof reductions. It is assumed that
substitution is capture avoiding:

Lemma 3. Let π a proof of labelled sequent Γ ` ∆ containing a free variable x.

Let t be some term. Then π[x := t] is a proof of (Γ ` ∆)[x := t].

The following property is important, because it makes it possible to use proof
terms as schemata, i.e. as objects that can be instantiated.

Theorem 1. Let π be a proof of a labelled sequent Γ ` ∆. Let A(x1, . . . , xn)
be an n-ary atom occurring in Γ ` ∆, s.t. x1, . . . , xn are its free variables. Let
F (x1, . . . , xn, y1, . . . , ym) be a formula having at least free variables x1, . . . , xn,

and with possible other free variables y1, . . . , ym. Assume that no occurrence of
A(x1, . . . , xn) in Γ ` ∆ is in the scope of a quantifier that binds one of the yj

and that no occurrence of A(x1, . . . , xn) in a cut formula occurring in π is in
the scope of a quantifier that binds one of the yj . Let π′ be obtained from π by
substituting A(x1, . . . , xn) := F (x1, . . . , xn, y1, . . . , ym) in every cut formula in
π. Then π′ is a proof of (Γ ` ∆)[A(x1, . . . , xn) := F (x1, . . . , xn, y1, . . . , ym)].

Note that when π is cut free, then π′ = π. The reason that Theorem 1 holds, is
the fact that the cut rule is the only rule that explicitly mentions formulas.

In case variables from y1, . . . , ym are caught, it is always possible to obtain
an α-variant of Γ ` ∆ and π, s.t. no capture takes place. The same holds for
any cut formula in π.

As an example, consider the sequent ∀x(A(x) ∧ B) ` (∀xA(x)) ∧ B, which
clearly has a cut free proof. Lemma 1 allows to substitute P (y, z) for B, (because
y and z are not caught), but it does not allow to substitute P (x, y, z) for B. The
sequent can be renamed into ∀x1(A(x1) ∧ B) ` (∀x1A(x1)) ∧ B.

4 The Negation Normal Form Transformation

We describe in detail how we intend to implement the negation normal form
transformation with proof generation.

Definition 4. Formula F is in negation normal form (NNF) if (1) F does not
contain → or ↔, (2) negation is applied only on atoms in F, (3) if F contains
> (or ⊥,) then F = >, (or ⊥).

A formula can be easily transformed into NNF by two rewrite systems. The
first rewrite system removes→ and↔, and it pushes the negations inwards. The
second rewrite system moves ⊥ and > upwards until they either disappear, or
reach the top of the formula. The rewrite systems could be combined into one
rewrite system, but that would be inefficient, because the two rewrite systems
are more efficient with different rewrite systems. The first rewrite system is given
by the following table:

A→ B ⇒ ¬A ∨ B

A↔ B ⇒ (¬A ∨ B) ∧ (A ∨ ¬B)

¬¬A ⇒ A

¬(A ∨B) ⇒ ¬A ∧ ¬B
¬(A ∧B) ⇒ ¬A ∨ ¬B
¬(∀x P (x))⇒ ∃x ¬P (x)
¬(∃x P (x))⇒ ∀x ¬P (x)

The following algorithm normalizes a formula under the set of rules.

Algorithm 1
formula nnf12(formulaF)
begin

while there are a rule A⇒ B and a substitution Θ, s.t.
AΘ = F do

F := BΘ

if F is an atom, A = ⊥ or A = >, then return F

if F has form ¬A, with A an atom, A = ⊥, or A = >, then return ¬A.

if F has form A ∧ B, then return nnf12(A) ∧ nnf12(B)
if F has form A ∨ B, then return nnf12(A) ∨ nnf12(B)
if F has form ∀x P (x), then return ∀x nnf12(P (x))
if F has form ∃x P (x), then return ∃x nnf12(P (x))

end

The algorithm implements a particular rewrite strategy, namely outside-
inside normalization. It assumes that the rewrite front starts at the outside
and then moves inward. When the formula has been normalized at one point,
then this point does not need to be reconsidered anymore. There second part of
the rewrite system needs exactly the opposite strategy, inside-outside normal-
ization. If one would combine the systems, one would have to look for possible
rewrites everywhere in the formula, which is less efficient.

Definition 5. A justified sequent is a pair of form (α:A ` β:B, π), s.t. α 6= β

and π is a proof of α:A ` β:B. A justified rewrite rule is a justified sequent
(α:A ` β:B, π), s.t. A⇒ B is a rewrite rule.

There is no formal distinction between a justified sequent and a justified rewrite
rule, but we give them different names because their roles are different.

We now modify the rewrite algorithm, so that it will output a proof at the
same time with its result. It will do this by returning a justified sequent.

Algorithm 2 Function nnf12(F, α) returns a justified sequent (α:F ` β:F ′, π),
s.t. F ′ = nnf12(F), and β is some new label.

justifiedsequent nnf12(formula F, label α)
begin

array of justifiedsequent Π ;
Initialize Π to the empty (zero length) array.
while there are a justified rewrite rule (α′:A′ ` β′:B′, π′) and

a substitution Θ, s.t. A′Θ = F do
begin

Let γ be a new label, not occurring in Π, and distinct from α.

Assign π′ := π′[α′ := α, β′ := γ]. (so that π′ now proves α:A′ ` γ:B)
Append (α:A′Θ ` γ:B′Θ, π′) to Π. (the length of Π is increased by 1,

there is no need to modify π′ because of Theorem 1)
Assign F := BΘ.

Assign α := γ.

end
If F is an atom, F = ⊥ or F = >, then

return applycut(Π).
If F has form ¬A, where A is an atom, A = ⊥ or A = >, then

return applycut(Π).

If F has form A1 ∧ A2, then
begin

Let α1, α2, β be new, distinct labels.
Assign B1, β1, π1 from (α1:A1 ` β1:B1, π1) := nnf12(A1, α1)
Assign B2, β2, π2 from (α2:A2 ` β2:B2, π2) := nnf12(A2, α2)
Append α:A1 ∧ A2 ` β:B1 ∧B2,

andleft(α,

andright(β,

weakenleft(α2, π1), β1,

weakenleft(α1, π2), β2),
α1, α2)) to Π.

return applycut(Π)
end

If F has form A1 ∨ A2, then
begin

Let α1, α2, β be new, distinct labels.
Assign B1, β1, π1 from (α1:A1 ` β1:B1, π1) := nnf12(A1, α1)
Assign B2, β2, π2 from (α2:A2 ` β2:B2, π2) := nnf12(A2, α2)
Append (α:A1 ∨ A2 ` β:B1 ∨ B2,

orright(β,

orleft(α,

weakenright(β2, π1), α1,

weakenright(β1, π2), α2),
β1, β2)) to Π.

return applycut(Π).
end

If F has form ∀x P (x), then
begin

Let α1 and β be a new, distinct labels.
Assign Q(x), β1, π1 from (α1:P (x) ` β1:Q(x), π1) := nnf12(P (x), α1)
Append (α:∀x P (x) ` β:∀x Q(x),

forallright(β, forallleft(α, π1, α1, x), β1, x)) to Π.

return applycut(Π)
end

If F has form ∃x P (x), then
begin

Let α1 and β be new, distinct labels.
Assign Q(x), β1, π1 from (α1:P (x) ` β1:Q(x), π1) := nnf12(P (x), α1)
Append (α:∃x P (x) ` β:∃x Q(x),

existsleft(α, existsright(β, π1, β1, x), α1, x)) to Π.

return applycut(Π)
end

end

Function applycut(Π) combines the proofs πi of αi:Ai ` βi:Bi into one proof
by using the cut rule. It must be the case that βi+1 = αi, and Bi+1 = Ai, for
1 ≤ i < |Π |.

(justifiedsequent) applycut(array of justifiedsequent Π)
begin

Σ is a variable of type labelled sequent.
π is a variable of type proof tree.
Assign (Σ, π) := Π1

for i := 2 to |Π | do
begin

Assign (α:A ` β:B) := Σ

Assign (β:B ` γ:C, ρ) := Πi

Assign Σ := α:A ` γ:C
Assign π := cut(B, weakenleft(α, ρ), β, weakenright(γ, π), β)

end
return (Σ, π)

end

We now come to the second part of the rewrite system that will ensure the
third condition of Definition 4.

A ∨ ⊥ ⇒ A A ∧ ⊥ ⇒ ⊥
A ∨ > ⇒ > A ∧ > ⇒ A

⊥ ∨A⇒ A ⊥ ∧A⇒ ⊥
>∨A⇒ > >∧A⇒ A

∀x ⊥ ⇒ ⊥ ∃x ⊥ ⇒ ⊥
∀x > ⇒ > ∃x > ⇒ >

In order to obtain a normal form, Algorithm 1 cannot be used, because the
outside-inside strategy does generally not result in a normal form. Instead, an
inside-outside rewrite strategy has to be used:

Algorithm 3
formula nnf3 (formula F)
begin

if F is an atom, A = ⊥ or A = >, then G := F

if F has form ¬A, with A an atom, A = ⊥, or A = >, then G := F

if F has form A ∧ B, then G := nnf3(A) ∧ nnf3(B)
if F has form A ∨ B, then G := nnf3(A) ∨ nnf3(B)
if F has form ∀x P (x), then G := ∀x nnf3(P (x))
if F has form ∃x P (x), then G := ∃x nnf3(P (x))

while there are a rule A⇒ B and a substitution Θ, s.t. AΘ = G do
G := BΘ

end

Algorithm 3 differs from Algorithm 1 only in the fact that rewriting on the
current level is attempted only after the subterms have been normalized.

Algorithm 2 can be easily modified correspondingly, by moving the while-
loop in the beginning towards the end. It can be also easily adopted to situations
where more complicated rewrite strategies are needed.

5 Subformula Replacement

Some steps in the clausal normal form transformation can cause exponential
blowup of the formula. The problematic steps are the replacement of A ↔ B

by (¬A ∨ B) ∧ (A ∨ ¬B), and the factoring of conjunctions over disjunctions
performed by the following rules: (A∧B)∨C ⇒ (A∨C)∧(B∨C), A∨(B∧C)⇒
(A ∨ B) ∧ (A ∨ C).
Expansion of ↔ would cause exponential blowup on the following sequence of
formulas

(a1 ↔ (a2 ↔ · · · (an−1 ↔ an))), n > 0.

Factoring would cause exponential blowup on the following sequence of formulas

(a1 ∧ b1) ∨ · · · ∨ (an ∧ bn), n > 0.

In order to avoid this, it is possible to use subformula replacement. For example,
in the last formula, one can introduce new symbols x1, . . . , xn, and replace it by
the equisatisfiable set of formulas

x1 ∨ · · · ∨ xn, x1 ↔ (a1 ∧ b1), . . . , xn ↔ (an ∧ bn).

Subformula replacement as such is not first-order, but it can be easily dealt with
within first-order logic, by observing that the new names are abbreviations of
certain formulas. During the CNF-transformation, we allow to add premisses of
the following form to the set of premisses:

∀x1 · · ·xn X(x1, . . . , xn)↔ F (x1, . . . , xn).

X is a new symbol that does not yet occur in the premisses and also not in
F (x1, . . . , xn). When the resolution prover succeeds, one obtains a proof π of a
sequent Γ, D1, . . . , Dk ` ⊥, in which Γ is the set of original first-order formulas,
and D1, . . . , Dk are the introduced premisses, which are all of form

∀x1 · · ·xnj
Xj(x1, . . . , xnj

)↔ Fj(x1, . . . , xnj
), for 1 ≤ j ≤ k.

A new symbol Xj can occur in Fj′ only when j′ > j, and it cannot occur in
Γ. By substituting the Xj away and applying Theorem 1, the proof π can be
transformed into a proof π′ of Γ, E1, . . . , Ek ` ⊥ in which each Ej has form

∀x1 · · ·xnj
F (x1, . . . , xnj

)↔ F (x1, . . . , xnj
).

These are simple tautologies which can be proven and cut away.

6 Antiprenexing

The purpose of anti-prenexing (also called miniscoping) is to obtain smaller
Skolem terms. In many formulas, not everything that is in the scope of a quan-
tifier, does also depend on this quantifier. If one systematically factors such
subformulas out of the scope of the quantifier, one can often reduce dependen-
cies between quantifiers. For details, we refer to [4], here we give only a few
examples:

Example 1. Without anti-prenexing, ∀x ∃y[p(x) ∧ q(y)] skolemizes into
∀x [p(x)∧q(f(x))]. Antiprenexing reduces the formula to (∀x p(x))∧(∃y q(y)),
which Skolemizes into (∀x p(x)) ∧ q(c).

Without anti-prenexing, ∀x ∃y1y2 [p(y1) ∧ q(x, y2)] skolemizes into
∀x [p(f1(x)) ∧ q(x, f2(x))]. Antiprenexing reduces the formula to
∀x [∃y1 p(y1) ∧ ∃y2 q(x, y2)], which Skolemizes into ∀x [p(c1) ∧ q(f2(x))].

Without anti-prenexing, ∀x ∃y [p(x) ∧ q(y) ∧ r(x)] skolemizes into
∀x[p(x) ∧ q(f(x)) ∧ r(x)]. Antiprenexing can reduce the formula to
∀x [p(x) ∧ r(x) ∧ ∃y q(y)], which can be Skolemized into ∀x [p(x) ∧ r(x) ∧ q(c)].

As far as we can see, all replacements can be handled by the following ’rewrite
system’:

A ∨ B ⇒ B ∨ A A ∧ B ⇒ B ∧ A

A ∨ (B ∨ C) ⇒ A ∨ B ∨ C A ∧ (B ∧ C) ⇒ A ∧ B ∧ C

∀x (P (x) ∧Q)⇒ (∀x P (x)) ∧Q ∃x (P (x) ∧Q)⇒ (∃x P (x)) ∧Q

∀x (P ∧Q(x))⇒ P ∧ ∀x Q(x) ∃x (P ∧Q(x))⇒ P ∧ ∃x Q(x)
∀x (P (x) ∨Q)⇒ (∀x P (x)) ∨Q ∃x (P (x) ∨Q)⇒ (∃x P (x)) ∨Q

∀x (P ∨Q(x))⇒ P ∨ ∀x Q(x) ∃x (P ∨Q(x))⇒ P ∨ ∃x Q(x)

∀x P ⇒ P ∃x P ⇒ P

∀x∀y P (x, y) ⇒ ∀y∀x P (x, y) ∃x∃y P (x, y) ⇒ ∃y∃x P (x, y)

The system is not a rewrite system in the usual sense, because an additional
strategy is needed for deciding when a certain rule should be applied. Straight-
forward normalization would not terminate due to the presence of permuta-
tion rules. If one would remove the permutation rules, one would often not
obtain the best possible result. For example, in the last formula of the example,
(p(x)∧ q(y))∧ r(x) first has to be permuted into (p(x)∧ r(x)) ∧ q(y), before the
rule ∃x(P ∧Q(x))⇒ P ∧ ∃x Q(x) can be applied.

Despite the fact that the decision making is more complicated than was
the case for the NNF, Algorithm 2 can be still modified for anti-prenexing,
because the decision making plays no role in the proof generation. For the proof
generation, only correctness of the rules matters, and all rules can be easily
proven correct.

7 Proof Reductions

Proof reductions are important, because they make it possible to obtain modu-
larity and flexibility. For a detailed motivation, we refer to [1]. There, a special
calculus called replacement calculus was introduced which allows for certain re-
ductions that remove repeated building up of the same context in a proof. In
sequent calculus, the standard reductions of cut elimination correspond to the re-
ductions of the replacement calculus, so there is no need anymore for the replace-
ment calculus. For the purpose of proof simplification, one should implement all
standard reductions of cut elimination (see [3]), except for the permutation of a
cut with a contraction, because this permutation is the cause of increasement in
proof length.

The proof reductions are needed in order to combine the repeated building
up of contexts. Suppose that one has a big formula of form F [A1], that A1 is first
rewritten into A2, and after that into A3. Algorithm 2 lifts a proof of A1 ` A2

to a proof of F [A1] ` F [A2]. After that, it lifts a proof of A2 ` A3 to a proof of
F [A2] ` F [A3], which is then combined, using cut, into a proof of F [A1] ` F [A3].

However, it would be more efficient to first apply cut on A1 ` A2 and A2 ` A3,

resulting in A1 ` A3, and lift this proof to F [A1] ` F [A3].
Combination of context lifting can be done only if one knows in advance the

order in which the replacements will be made, and when they are near to each
other. This was the case for the NNF-transformation, and Algorithm 2 makes
use of this fact, both for the outside-inside strategy, and for the inside-outside
strategy.

If one does not know the order of replacements in advance, then Algorithm 2
will not avoid repeated lifting into the same context. This would be the case
for anti-prenexing. In that case, one has to rely on proof reductions. Using the
standard reductions of cut elimination, the cut on the top level can be permuted
with the rules that build up the context, until it either disappears, or reaches a
contraction.

Using proof terms, the reductions can be easily implemented by a rewrite
system on proof terms. We give a few examples of the reductions involved, and
give the corresponding rewrite rules:

Γ ` ∆, β1:A Γ ` ∆, β2:B Γ, α1:A, α2:B ` ∆

Γ ` ∆, β:A ∧ B Γ, α:A ∧ B ` ∆

Γ ` ∆

is replaced by
Γ ` ∆, β1:A Γ, α1:A, α2:B ` ∆

Γ ` ∆, β2:B Γ, α2:B ` ∆

Γ ` ∆.

The corresponding rewrite rule is

cut(A ∧ B, andleft(α, π, α1, α2), α, andright(β, π1, β1, π2, β2), β)⇒

cut(B, cut(A, π, α1, π1, β1), α2, π2, β2).

The following proof fragment

Γ ` ∆, β1:P [x := y] Γ, α1:P [x := t] ` ∆

Γ ` ∆, β:∀x P (x) Γ, α:∀x P (x) ` ∆

Γ ` ∆

reduces into

Γ ` ∆, β1:P [x := t] Γ, α1:P [x := t] ` ∆

Γ ` ∆

The corresponding rewrite rule is

cut(∀x P (x), forallleft(α, π2, α1, t), α, forallright(β, π1, β1, y), β)⇒

cut(P [x := t], π2, α1, π1[y := t], β1).

8 Conclusions

We have shown that implementing the CNF-transformation with proof genera-
tion is possible. We have given a data structure (inspired by [5]) for the repre-
sention of sequent calculus proofs, which is concise, and which allows for imple-
mentation of proof reductions. We have given a general translation algorithm,
based on rewriting, that covers nearly all of the transformations involved.

Proof generation will not be feasible for formulas that are propositionally
complex. Such formulas will have exponentially large proofs, (because probably
NP 6= co-NP .)

References

1. Hans de Nivelle. Extraction of proofs from the clausal normal form transforma-

tion. In Julian Bradfield, editor, Proceedings of the 16th International Workshop
on Computer Science Logic (CSL 2002), volume 2471 of Lecture Notes in Artificial
Intelligence, pages 584–598, Edinburgh, Scotland, UK, September 2002. Springer.

2. Hans de Nivelle. Translation of resolution proofs into short first-order proofs without

choice axioms. In Franz Baader, editor, Proceedings of the 19th International Con-
ference on Computer Aided Deduction (CADE 19), volume 2741 of Lecture Notes
in Artificial Intelligence, pages 365–379, Miami, USA, July 2003. Springer Verlag.

3. Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

4. Andreas Nonnengart and Christoph Weidenbach. Computing small clause normal

forms. In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning, volume I, chapter 6, pages 335–367. Elsevier Science B.V., 2001.

5. Frank Pfenning. Structural cut elimination. In Dexter Kozen, editor, Proceedings
10th Annual IEEE Symposion on Logic in Computer Science, pages 156–166. IEEE

Computer Society Press, 1995.

