
Subsumption for Three-Valued Geometric Resolution

ZJP Seminar, Wroc law, 20.05.2016.

1

Context

Theorem proving: We try to find logical proofs automatically.

Frequently used calculi:

Untyped, first-order logic ⇒ Resolution, Paramodulation,

Superposition.

In 2005-2006, I developed a calculus called geometric resolution. It

is good at finding finite models, and reasonably good at finding

proofs.

2

Context (2)

• Geometric Resolution: A Proof Procedure Based on Finite

Model search, (coauthored by Jia Meng), International Joint

Conference on Automated Reasoning, 2006.

Geometric resolution has been implemented in a theorem prover,

which was (creatively) called Geo, and written in C++.

Dependent on how you interpret the results, one could say that

Geo was 4th in CASC 2006 in FOF and CNF categories, and third

in the SAT category.

Not great, but not also not hopeless.

My real aim, from the beginning, was not to win CASC, but to

develope a theorem prover that is good at dealing with partial

functions.

3

Partial Functions

Assume that X = 1, Y = 1 : It follows that

X2 − Y 2 = X2 −XY ⇒ (X − Y)(X + Y) = (X − Y)X ⇒

X + Y = X ⇒ 1 + 1 = 1. (QVOD ERAT DEMONSTRANDVM)

(Wie deelt door nul is een ...)

template<typename A>

void misbehave()

{ std::list<A> lst1, lst2;

if(lst1.front() == list2.front())

std::cout << "first elements equal!";

else

std::cout << "first elements differ!";

}

4

Partial Classical Logic

It was not so easy as I thought: In 2010-2014, I developed an

extension of classical logic, with supports partial functions.

I am totally not going to speak about this logic, but it is a nice

logic, and I believe it is ’right’.

• Theorem Proving for Classical Logic with Partial Functions by

Reduction to Kleene Logic. Journal of Logic and Computation,

2014.

• Classical Logic with Partial Functions, Journal of Automated

Reasoning, 2011.

(Don’t read the 2011 paper, because the logic has evolved)

5

Three-Valued Logic

The theorem proving method in the 2014 paper is a 3-valued

adaptation of Geometric Resolution.

I want an implementation of this calculus, that is so effective, that

somebody could actually consider using it.

The implementation is dominated by one miserable problem, where

the prover spends most its time, which is matching Horn clauses

into interpretations.

So we finally arrived at our main topic!

6

Matching

We want to know whether a 3-valued formula without function

structure is false in a 3-valued interpretation without function

structure, e.g. formulas

φ1 = Pf (X, Y), Pf (Y, Z) | Qt(Z,X).

φ2 = Pf (X, Y), Pt(Y, Z) | X ≈ Y.

φ3 = Pt(X, Y) | ∃Z Qt(Y, Z)

in interpretation

I = Pt(c0, c0), Pe(c0, c1), Pt(c1, c1), Pe(c1, c2), Qt(c2, c0).

7

Geo tries to construct a satisfying interpretation of a set of such

3-valued formulas by backtracking. Matching is the key operation.

Unfortunately:

theorem: Matching is very NP-complete.

The proof is easy, by reduction from SAT.

8

Substitutions, Substlets

Substitutions are defined a usual. A substlet is a (small)

substitution. We usually write substlets in form v/c.

We say that substitutions Θ1 and Θ2 are consistent if for every

variable v occurring in the domain of Θ1 and Θ2, we have

vΘ1 = vΘ2.

If Θ1 and Θ2 are not consistent, they are in conflict.

If Θ1, . . . ,Θn is a set of pairwise consistent substitutions, then
⋃

{Θ1, . . . ,Θn} is also a substitution.

We say that Θ1 implies Θ2 if Θ2 ⊆ Θ1.

(These definitions also apply to substlets.)

9

Lemmas, Clauses

A lemma λ is a finite set of substlets. If the substlets in the lemma

have the same variables, we call λ a clause.

A substitution Θ implies a lemma λ if there is a substlet (v/c) ∈ λ,

s.t. Θ implies v/c.

A substitution Θ is in conflict/conflicts λ if Θ conflicts every

(v/c) ∈ λ.

10

GCSP, Generalized Constraint Solving Problem

Definition A GCSP is a pair of form (Σ+,Σ−), in which Σ+ is a

finite set of clauses, and Σ− is a finite set of substlets.

We assume that (Σ+,Σ−) is range-restricted: Every variable v

occurring in an (v/c) ∈ Σ−, also occurs in a clause c ∈ Σ+.

A substitution Θ is a solution of (Σ+,Σ−) if Θ makes every clause

c ∈ Σ+ true, and Θ makes no σ ∈ Σ− true.

11

Example (1)

Matching

Pf (X, Y), Pf (Y, Z) | Qt(Z,X)

into

Pt(c0, c0), Pe(c0, c1), Pt(c1, c1), Pe(c1, c2), Qt(c2, c0)

gives:

(X, Y) / (c0, c0) | (c0, c1) | (c1, c1) | (c1, c2)

(Y, Z) / (c0, c0) | (c0, c1) | (c1, c1) | (c1, c2)

(X,Z) / (c0, c2)

12

Example (2)

Matching

Pf (X, Y), Pt(Y, Z) | X ≈ Y

into

Pt(c0, c0), Pe(c0, c1), Pt(c1, c1), Pe(c1, c2), Qt(c2, c0)

gives

(X, Y) / (c0, c0) | (c0, c1) | (c1, c1) | (c1, c2)

(Y, Z) / (c0, c1) | (c1, c2)

(X, Y) / (c0, c0)

(X, Y) / (c1, c1)

(X, Y) / (c2, c2)

13

Example (3)

Matching

Pt(X, Y) | ∃Z Qt(Y, Z)

into

Pt(c0, c0), Pe(c0, c1), Pt(c1, c1), Pe(c1, c2), Qt(c2, c0)

gives

(X, Y) / (c0, c1) | (c1, c2)

(Y) / (c2)

14

Essential Preprocessing

1. If Σ− contains a substlet without variables, then (Σ+,Σ−) is

trivially unsolvable.

2. If Σ+ contains a clause without variables, then (Σ+,Σ−) is

trivially unsolvable if this clause is empty. Otherwise, the

clause can be removed from Σ+.

3. If Σ+ contains a clause c containing a substlet λ that implies a

σ ∈ Σ−, then λ can be removed from c. If this makes c empty,

then (Σ+,Σ−) is unsolvable.

15

A Simple Algorithm

Algorithm solve(Θ) is a recursive algorithm. The parameter Θ is

initially empty. In addition, it has access to (Σ+,Σ−).

• Every clause c ∈ Σ+ can be partitioned into c+ and c−, where

c− are the substlets that are in conflict with Θ, and c+ are the

remaining substlets.

• If there is a clause c ∈ Σ+ with c+ = ∅, then fail.

• If there are no clauses with unassigned variables, then report Θ

as a solution.

• From the clauses containing unassigned variables, pick a clause

c with minimal ‖c+‖. For each (v/c) ∈ c+ do the following:

Let Θ′ = Θ ∪ (v/c). If Θ′ does not imply a substlet in Σ−, then

recursively call solve(Θ′).

• When all substlets of c+ fail to produce a solution, then fail.

16

Optional Preprocessing: Filtering

Procedure filter(c,Σ+,Σ−, U) checks local consistency of clauses in

Σ+ against c. If any clauses lose substlets, they are added to U.

• Generate all connected subsets C ⊆ Σ+ of size k that contain c.

For every generated subset C, do the following:

• Write C in the form {c1, . . . , ck}. Initialize

(s1, . . . , sk) = (∅, . . . , ∅).

• Generate all solutions Θ of (C,Σ−). For every solution Θ

found, do

– For every ci (1 ≤ i ≤ k), let s ∈ ci be the substlet that is

consistent with Θ.

– Replace si by si ∪ s.

• For every si that is different from ci, replace ci by si, and add

ci to U.

17

Filtering (2)

Filtering proceeds as follows:

• Start with U = Σ+.

• As long as U is not empty, pick a c ∈ U, and remove c from U.

After that, call filter(c,Σ+,Σ−, U).

A concrete implementation uses indices instead of clauses.

Reasonable choices for k are 2, 3, 4.

If filtering results in an empty clause, the problem has no solution.

2-Filtering rejects 99% of the cases without search.

18

Learning from Conflicts (Borrowed from DPLL)

Clause learning in SAT-solving is very effective, so it seems

reasonable to try to use similar techniques here:

(Σ+,Σ−) implies a lemma λ if every solution Θ of (Σ+,Σ−) implies

λ.

19

Resolution

Let λ1, . . . , λn be a sequence of lemmas. Let µ1 ⊆ λ1, . . . , µn ⊆ λn

be chosen in such a way that for every sequence of substlets

s1 ∈ µ1, . . . , sn ∈ µn, we have

1. Two si1 , si2 are in conflict, or

2.
⋃

{s1, . . . , sn} implies a σ ∈ Σ−.

Then

(λ1\µ1) ∪ · · · ∪ (λn\µn)

is a resolvent of λ1, . . . , λn.

We write RES(λ1, . . . , λn;µ1, . . . , µn) for the resolvent.

20

Theorem: If (Σ+,Σ−) implies all of λ1, . . . , λn, then (Σ+,Σ−)

implies RES(λ1, . . . , λn;µ1, . . . , µn).

Unrestricted resolution is NP-complete of course. (Given clauses

λ1, . . . , λn, find µ1, . . . , µn, s.t. a resolvent is possible.)

If µ1, . . . , µn are already known, then resolution is cheap.

21

Addition of Learning

Modify solve(Θ) in such a way that, whenever it fails, it constructs

a lemma λ, s.t.

1. λ is in conflict with Θ.

2. (Σ+,Σ−) implies λ.

We call a lemma with properties 1,2 a conflict lemma.

22

Addition of Learning (2)

• If there is a clause c ∈ Σ+ with c+ = ∅, then c is a conflict

lemma.

• By induction, each of the recursive calls solve(Θ′) produces a

conflict lemma of Θ′. Let λ1, . . . , λm the conflict lemmas thus

produced. If one of λ1, . . . , λm is a conflict lemma of Θ, then

nothing needs to be done.

Otherwise, construct RES(c, λ1, . . . , λm; c+, µ1, . . . , µm),

where each µi is the subset of λi, that shares a variable with c+.

23

Combination of Filtering and Backtracking

A weak version of the previous algorithm is present in the

two-valued version of Geo, and it works reasonably well.

Since filtering is succesful, it seems natural to mix filtering with

backtracking in the following way:

1. Filter (Σ+,Σ−). If this results in an empty clause, then

(Σ+,Σ−) has no solution.

2. Otherwise, pick a c ∈ Σ+, and partition it into m ≥ 2 parts

c1, . . . , cm. Define Σ+

i
= (Σ+\c) ∪ ci.

Recursively apply the algorithm on

(Σ+
1 ,Σ

−), . . . , (Σ+
m
,Σ−).

24

More precisely:

Algorithm refine(Σ+) is a recursive algorithm. Initially, (Σ+,Σ−)

is filtered into (Σ′+,Σ−). After that, if Σ′+ does not contain an

empty clause, refine(Σ′+) is called.

• If the c ∈ Σ+ that have ‖c‖ = 1 imply a σ ∈ Σ−, then fail.

• If all c ∈ Σ+ have ‖c‖ = 1, then report solution
⋃

Σ+.

• Select a c ∈ Σ+ and partition it as c1 ∪ · · · ∪ cm, for some

m ≥ 2. For each ci do the following:

• – Set Σ+

i
= (Σ+\c) ∪ ci. Set U = {ci}.

– Do a complete filtering: As long as U is not empty, pick a c

from U, and remove c from U. Call filter(c,Σ+

i
,Σ−, U). If

this results in an empty clause, then return fail.

– Otherwise, call refine(Σ+

i
).

25

Addition of Learning

Describing algorithms in mathematical notation is always tricky

because variables are reassigned. One could solve this by indexing,

but that is ugly.

Let c be a clause occurring in a version of Σ+ during execution of

the algorithm. There exists an initial clause c in the initial Σ+ that

c is obtained from. Write I(c) for this clause.

refine(Σ+) is modified in such a way that, whenever it fails, it

constructs a lemma λ, s.t.

1. every substlet σ ∈ λ is in conflict with a clause c in the present

version of Σ+.

2. (Σ+,Σ−) implies λ.

As before, we call a lemma with properties 1,2 a conflict lemma.

26

New version of refine:

Let Λ be the current set of lemmas, initially Λ = ∅.

• If Λ contains a lemma λ that can be partitioned as λ+ ∪ λ−,

where λ− are the substlets that are in conflict with some

c ∈ Σ+, and all substlets in λ− have the same set of unassigned

variables, then

– If λ+ = ∅, then λ is a conflict lemma.

– Otherwise, partition every c ∈ Σ+ as c+ ∪ c−, where c− are

the substlets that are in conflict with λ+. Replace c by c+.

If c+ is empty, then add RES(c, c−;λ, λ+) to Λ.

• If the c ∈ Σ+ that have ‖c‖ = 1 imply a σ ∈ Σ−, then let

c1, . . . , cm ∈ Σ+ be a minimal set of clauses that implies σ.

Add RES(I(c1), . . . , I(cm); c1, . . . , cm) to Λ.

27

• By induction, each of the recursive calls of solve(Σ+

i
) produces

a conflict lemma of Σ+

i
).

Let λ1, . . . , λm be the resulting conflict lemma.

If one of λ1, . . . , λm already is a conflict lemma of Σ, then

nothing needs to be done.

Otherwise, construct

RES(I(c), λ1, . . . , λm; c, µ1, . . . , µm),

where µi are the substlets in λi that are in conflict with c.

• (I skip the construction for filter)

28

Filtering

Consider problem again:

(X, Y) / (0, 0) | (0, 1) | (1, 1) | (1, 2)

(Y, Z) / (0, 0) | (1, 0) | (2, 1)

(Z, T) / (1, 0) | (1, 1)

By staring long at (Y, Z) and (Z, T), one sees that only

(Y, Z) := (2, 1) is possible.

After that, by looking at the first two substclauses, one sees that

only (X, Y) := (1, 2) is possible.

Problems solved without backtracking!

29

Efficient Implementation

• 2-Literal watching can be used for finding conflict lemmas. One

picks two literals with different set of variables, and watches all

variables in the literals.

• Clauses c ∈ Σ+ are replaced by subsets, and restored all the

time. At the same time, one has to remember I(c).

Represent I(c) as an array, and c as an interval in I(c).

Deletion of σ ∈ c. Swap σ to the end of the interval.

Invariant: Substlets outside of the current interval are not

moved.

30

Conclusions

One of these algorithms will be good. I have no real time to try

them out systematically.

NP-completeness is caused by increased expressivity of geometric

formulas. It may result in shorter proofs.

Computer science is an empirical science. It is closer to physics

than to mathematics.

31

