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Introduction

We present a new calculus for theorem proving in first-order logic

with equality.

We call the calculus geometric resolution, because it operates on a

normal form, which is derived from geometric formulas. (this is a

first-order fragment introduced by Thoralf Skolem)

We show that the calculus is sound and complete for first-order

logic.

Disclaimer

Geometric resolution has nothing to do with computer graphics!
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Motivation

• Try out something new.

• Avoid use of Herbrand’s theorem, because (unrestricted)

interpretations can be much more compact than Herbrand

interpretations.

• Find general theorem proving strategies with good termination

behaviour, and which give more information in the case of

termination.

• Find theorem proving strategies that can deal better with

partial functions, and incompletely defined functions.
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Geometric Formulas

Definition: We assume an infinite set of variables V .

A variable atom is an atom of one of the following two forms:

1. p(v1, . . . , vn) with n ≥ 0 and v1, . . . , vn ∈ V .

2. v1 6≈ v2 with v1, v2 ∈ V .

Observe that:

• There are no positive equalities.

• There are no constants and no function symbols.
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Definition: A geometric formula has form

∀x A1(x) ∧ · · · ∧ Ap(x) ∧ x1 6≈ x′

1 ∧ · · · ∧ xq 6≈ x′

q → Z(x),

in which x1, x
′

1, . . . , xq, x
′

q ∈ x ⊆ V .

Z(x) can have one of the following three forms:

1. The false constant ⊥.

2. A disjunction of atoms B1(x) ∨ · · · ∨ Br(x), with r > 0.

3. An existential formula of form ∃y B(x, y).

Types 1 and 2 overlap (if one would allow r = 0) but we prefer to

distinguish the types. Geometric formulas of Type 1 are called

lemmas. Formulas of Type 2 are called disjunctive. Formulas of

Type 3 are called existential.
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Example 1

We might be interested in finding out whether

a ≈ b, b ≈ c ⊢ a ≈ c.

We try to find a model for

a ≈ b, b ≈ c, a 6≈ c.

Resulting geometric formulas are:

A(X) ∧ B(Y ) ∧ X 6≈ Y → ⊥,

B(X) ∧ C(Y ) ∧ X 6≈ Y → ⊥,

A(X) ∧ C(X) → ⊥,

→ ∃x A(x),

→ ∃x B(x),

→ ∃x C(x).

6



Example 2

What about s(a) ≈ a ⊢ s(s(a)) ≈ a ?

Try to find model for

s(a) ≈ a, s(s(a)) 6≈ a.

A(X) ∧ S(X, Y ) ∧ A(Y ) ∧ X 6≈ Y → ⊥,

A(X) ∧ S(X, Y ) ∧ S(Y, X) → ⊥,

∃x A(x),

∀x∃y S(x, y).
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Example 3

a ≈ s(a), p(a, a) ∨ p(s(a), s(a)) ⊢ p(a, a).

Negation of goal:

a ≈ s(a), p(a, a) ∨ p(s(a), s(a)), ¬p(a, a).

A(X) ∧ S(X, Y ) ∧ X 6≈ Y → ⊥,

A(X) ∧ S(X, Y ) → p(X, X) ∨ p(Y, Y ),

A(X) ∧ p(X, X) → ⊥,

∃x A(x),

∀x∃y S(x, y).
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After these examples, you might be willing to believe that:

Theorem:

Every set of first-order formulas can be translated into a set of

geometric formulas, which is equisatisfiable.

The result (and the computation) can be linear in the size of the

input.

• First compute negation normal form,

• Reduce scope if quantifiers (if possible).

• Then follows the most interesting step of the transformation,

which is anti-Skolemization:
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• For each function symbol or constant f, introduce a new

predicate symbol Pf , s.t. #Pf = #f + 1.

• for each new predicate symbol Pf , introduce a seriality axiom:

∀x ∃y Pf (x, y).

• As long as F contains a functional term, let f(x1, . . . , xn) be a

functional term with only variable arguments.

Write F = F [ A[ f(x1, . . . , xn) ] ], where A is the smallest

subformula that contains all occurrences of f(x1, . . . , xn).

Replace

F [ A[ f(x1, . . . , xn) ] ]

by

F [ ∀y (Pf (x1, . . . , xn, y) → A[y] ) ].
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Example (of anti-Skolemization)

The formula

∀x∃y y ≈ s(s(x))

is replaced by

∀xα S(x, α) → ∃y y ≈ s(α).

One more replacement results in

∀xαβ S(x, α) ∧ S(α, β) → ∃y y ≈ β.

The seriality axiom is:

∀x∃y S(x, y).
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Another Example

∀x∃y t(x, y) ≈ n,

⇒

∀x∃y∀α T (x, y, α) → α ≈ n,

⇒

∀β N(β) → ∀x∃y∀α T (x, y, α) → α ≈ β.

The seriality axioms are:

∀xy∃z T (x, y, z),

∃x N(x).
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Searching for a Model

Definition: An interpretation is a finite set of atoms, with

arguments from a fixed, given set E .

Equality is interpreted as object equality, therefore there are no

disequality atoms in interpretations.

Examples of interpretations are

A(e0), S(e0, e1), S(e1, e2), B(e2).

A(e0), B(e1), P (e0, e1, e2), Q(e2, e2, e1).
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A Naive Algorithm for Theorem Proving

Definition: Let I be an interpretation. We call geometric formula

∀x A1(x) ∧ · · · ∧ Ap(x) ∧ x1 6≈ x′

1 ∧ · · · ∧ xq 6≈ x′

q → Z(x)

applicable in I with ground substitution Θ, if

• All Ai(x)Θ are in I.

• For each xj 6≈ x′

j , xjΘ and x′

jΘ are distinct.

• and Z(x)Θ is false in I. (definition follows on next slide)
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When is Z(x)Θ false in I?

1. If Z(x) has form ⊥, then Z(x)Θ is always false in I.

2. If Z(x) has form B1(x)∨ · · · ∨Br(x) then Z(x)Θ is false in I, if

none of Bj(x)Θ is present in I.

3. If Z(x) has form ∃y B(x, y) then Z(x)Θ is false in I if there is

no element e ∈ E , s.t. (B(x, y)Θ) {y := e} is present in I.
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Start with empty interpretation I = { }.

• If there is no applicable rule, then I is a model.

• Otherwise, select a rule ∀x Φ(x) → Z(x) that is applicable on I

with ground substitution Θ.

– If Z(x) has form ⊥, then backtrack.

– If Z(x) has form B1(x) ∨ · · · ∨ Br(x), then backtrack

through all of

I ∪ {Bj(x)Θ}.

– If Z(x) has form ∃y B(x, y), then backtrack through

I ∪ { B(x, y) Θ · {x := e} },

for each e that is present in I. In addition, try

I ∪ { B(x, y) Θ · {x := ê} }

for a new element ê that is not present in I.
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Remember the example

A(X) ∧ B(Y ) ∧ X 6≈ Y → ⊥, B(X) ∧ C(Y ) ∧ X 6≈ Y → ⊥,

A(X) ∧ C(X) → ⊥,

→ ∃x A(x), → ∃x B(x), → ∃x C(x).

(empty interpretation),

A(e0),

A(e0), B(e0),

A(e0), B(e0), C(e0),

A(e0), B(e0), C(e1),

A(e0), B(e1).

(backtracking complete)
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An example with disjunction:

→ ∃x A(x),

A(X) → B(X) ∨ C(X), A(X) ∧ B(X) → ⊥, C(X) → ⊥.

(empty interpretation),

A(e0),

A(e0), B(e0),

A(e0), C(e0).

(backtracking complete)
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Evaluation of the Naive Model Search Algorithm

• A clever implementation of naive model search performs better

than I expected.

• Much depends on the selection strategy. (i.e. which applicable

rule is expanded first)

• But, of course, this algorithm will never be seriously

competitive.

How to improve?

⇒ Avoid work being redone, add learning.
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Model Search with Learning

The naive search algorithm attempts to construct an interpretation

I using backtracking. It maintains a set of geometric formulas G

and an interpretation I, which it tries to extend to a model.

Let us call a recursive implementation search(I,G).

The improved version search
+(I,G) has the following specification:

At every time when it returns (including returns from recursive

calls) :

Either I has been extended to a complete model (no rules in G are

applicable),

or G has been extended in such a way that there is a rule of form

∀x Φ(x) → ⊥ in G, which is applicable in I.
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The algorithm search
+(I,G) is implemented as follows:

• If I is a model, then return I.

• Otherwise, there exists a rule ∀x Φ(x) → Z(x) that is

applicable on I with ground substitution Θ.

• If Z(x) = ⊥, then we return the rule as is.

• If Z(x) has form B1(x) ∨ · · · ∨ Br(x), then recursively call

search
+(I ∪ {B1(xΘ)},G), . . . , search+(I ∪ {Br(xΘ)},G).

• If one of the recursive calls returned a model, then return this

model. Otherwise (by recursion), we have for each

I ∪ {Bj(xΘ)} an applicable rule of form ∀yj Φj(yj) → ⊥.

• We will show that there is a way to obtain a lemma of form

∀z Ψ(z) → ⊥ that is applicable in I.
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• If Z(x) has form ∃y B(x, y), then for each e ∈ E, recursively

call

search
+(I ∪ { B(xΘ, e) },G)

and for one ê 6∈ E, recursively call

search
+(I ∪ { B(xΘ, ê) },G).

• If one of the recursive calls returned a model, then return this

model. Otherwise (by recursion), we have for each

I ∪ { B(xΘ, e) }, (e ∈ E)

and for

I ∪ { B(xΘ, ê) }, ê 6∈ E,

an applicable lemma.

• We will show that there is a way to obtain a lemma of form

∀z Ψ(z) → ⊥, that is applicable in I.
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Rules for Lemma Learning

A complete calculus can be obtained by the following three rules:

• Instantiation (followed by merging)

• Disjunction resolution.

• Existential resolution.
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Lemma Factoring:

Let λ =

∀x A1(x) ∧ A2(x) ∧ · · · ∧ Ap(x) ∧ x1 6≈ x′

1 ∧ · · · ∧ xq 6≈ x′

q → ⊥,

be a lemma. Let Σ be a substitution of form {y := y′}. Then the

following lemma is a factor of λ:

∀xΣ A1(xΣ)∧ · · · ∧Ap(xΣ)∧ x1Σ 6≈ x′

1Σ ∧ · · ·∧ xqΣ 6≈ x′

qΣ → ⊥.
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Disjunction Resolution:

Let ρ =

∀x Φ(x) → B1(x) ∨ · · · ∨ Bq(x)

be a disjunctive formula.

Let λ =

∀y D1(y) ∧ · · · ∧ Dr(y) ∧ y1 6≈ y′

1 ∧ · · · ∧ ys 6≈ y′

s → ⊥,

be a lemma, s.t. B1(x) and D1(y) are unifiable. Then the following

formula is a disjunction resolvent of ρ and λ:

∀ xΣ yΣ Φ(x)Σ∧

D2(y)Σ ∧ · · · ∧ Dr(y)Σ ∧ y1Σ 6≈ y′

1Σ ∧ · · · ∧ ysΣ 6≈ y′

sΣ →

B2(x)Σ ∨ · · · ∨ Bq(x)Σ.
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Existential Resolution:

Let ρ =

∀x Φ(x) → ∃y B(x, y)

be an existential formula.

Let λ =

∀z v Ψ(z) ∧ B(z, v) ∧ v 6≈ z1 ∧ · · · ∧ v 6≈ zs → ⊥,

be a lemma, s.t. B(x, y) and B(z, v) are unifiable and v 6∈ z. Then

the following formula is an existential resolvent of ρ and λ:

∀ xΣ zΣ Φ(x)Σ ∧ Ψ(z)Σ → B(z, z1)Σ ∨ · · · ∨ B(z, zs)Σ.
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Providing some Evidence

Suppose we have I = p(e0), q(e0).

Assume that the applicable rule is:

p(X) → r(X) ∨ s(X).

Assume that p(e0), q(e0), r(e0) has applicable rule

r(X) → ⊥.

Assume that p(e0), q(e0), s(e0) has applicable rule

q(X) ∧ s(X) → ⊥.

By disjunction resolution, one can obtain:

p(X) ∧ q(X) → ⊥.
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Existential Resolution

The simplest form of existential resolution is:

From

p(X, Y ) → ∃z q(X, Y, z)

and

q(X, Y, Z) ∧ r(X, Y ) → ⊥

derive

p(X, Y ) ∧ r(X, Y ) → ⊥.
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Existential Resolution (2)

Now suppose we have

p(X, Y ) → ∃z q(X, Y, z)

and

q(X, Y, Z) ∧ Z 6≈ X ∧ r(X, Y ) → ⊥.

The second rule refutes almost all possible choices for Z, except the

case where Z ≈ X.

Therefore, we must keep this possibility in the conclusion:

p(X, Y ) ∧ r(X, Y ) → q(X, Y, X).
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Existential Resolution (3)

Similarly,

p(X, Y ) → ∃z q(X, Y, z)

and

q(X, Y, Z) ∧ Z 6≈ X ∧ Z 6≈ Y ∧ r(X, Y ) → ⊥

result in

p(X, Y ) ∧ r(X, Y ) → q(X, Y, X) ∨ q(X, Y, Y ).
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Providing Evidence for Existential Resolution

Suppose that we have I = p(e0).

Assume that the applicable rule is → ∃y q(y).

Assume that p(e0), q(e0) has applicable rule

p(X) ∧ q(X) → ⊥.

Assume that p(e0), q(e1) has applicable rule

p(X) ∧ q(Y ) ∧ X 6≈ Y → ⊥.

Existential resolution gives

p(X) → q(X).

Disjunction resolution results in

p(X) → ⊥.
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Theorem: The calculus does what it is supposed to do.

That is: On every choice point, it derives a new closing lemma that

closes the interpretation before the choice point, using the closing

lemmas obtained from the recursive calls.
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Implementation

We have an implementation of this calculus, which is called geo. it

took part in this year’s CASC. It solved:

FOF: 73 out of 150,

CNF: 45 out of 150,

SAT: 51 out of 100,

UEQ: 2 out of 100.

This is not bad for a first time, but there is still a lot of work to do.
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Matching

The most interesting part of geo is its matching algorithm:

Matching: Given an interpretation I and a set of geometric

formulas G, find a geometric formula ∀x Φ(x) → Z(x), that is

applicable on I with ground substitution Θ.

In practice, this is only important for Z(x) = ⊥.

First Solution: Naive implementation, using backtracking.

Performance ⇒ hopeless.
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Second solution: Observe that in nearly all cases, rules

∀x Φ(x) → ⊥

are ’near splittable’. This means that Φ(x) can be partitioned into

two parts Φ1(x1, y) ∪ Φ2(x2, y), such that y is small in comparison

to x.

Store substitutions on y and remember whether they result in a

matching.

Performance ⇒ much better, but excessive memory use.
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Matching Algorithm

Definition: A substitution lemma is an object of form λ → ⊥,

where λ is a ground substitution.

Definition: A substition clause is an object of form Θ1 ∨ · · · ∨ Θp,

where Θ1, . . . , Θp are ground substitutions with the same domain.

A state of the matching algorithm consists of a triple (Θ, C, Λ),

where

• Θ is a ground substitution.

• C is a set of substitution clauses.

• Λ is a set of substitution lemmas.
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The algorithm M(Θ, C, Λ) returns either a ground substitution Θ

that satisfies all the clauses in C or a substitution lemma λ → ⊥

for which λ ⊆ Θ.

• If there exists a substitution lemma λ → ⊥, s.t. λ ⊆ Θ, then

M(Θ, C, Λ) returns this lemma.

• If for each Θ1 ∨ · · · ∨ Θp ∈ C, there is a j s.t. Θj ⊆ Θ, then

return M(Θ, C, Λ) returns Θ.
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• Let c ∈ C be a substitution clause of form Θ1 ∨ · · · ∨ Θp. Let

Σ1 ∨ · · · ∨ Σn be the part of c that is consistent with Θ.

Let Ξ1 ∨ · · · ∨ Ξm be the part of c that is inconsistent with Θ.

(So we have n + m = p)

For each Σi, compute σi := M(Θ + Σi, C, Λ).

If one of the σi is a substitution, then return σi.

Otherwise, all σi are lemmas of form λi → ⊥. If one of the λi

has λi ⊆ Θ, then return λi → ⊥.

Otherwise, let Θ′ be a minimal subset of Θ that is inconsistent

with all of Ξ1, . . . , Ξm. For 1 ≤ i ≤ n, define λ′

i = λi ∩ Θ.

Then M(Θ, C, Λ) = (λ′

1 ∪ · · · ∪ λ′

n) ∪ Θ′ → ⊥.

38



This matching algorithm gives acceptable performance. Hardest

instances produce about 50000 lemmas.

Most matches are computed < 0.01 seconds.
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Optimizations of the Calculus

At this moment, I have two optimizations of the calculus:

Subsumption (As usual) If there are two lemmas ∀x Φ(x) → ⊥,

and ∀y Ψ(y) → ⊥, and there is a substitution Σ, s.t.

Φ(x)Σ ⊆ Ψ(y), then ∀y Ψ(y) → ⊥ can be deleted.

Functional Reduction If there is a lemma of form

∀x Y1 Y2 Φ(x) ∧ F (x, Y1) ∧ F (x, Y2) → ⊥, and the only positive

occurrence of F is in a rule of form ∀z Ψ(z) → ∃y F (z, y), then

Y1 and Y2 can be unified.
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Conclusions, Future Work

• We gave a new calculus, which is somewhat similar to

resolution, and which is refutationally complete for first-order

logic.

• Since the algorithm provides an implicit completeness proof,

this calculus could be used for saturation-based theorem

proving.

• But we do not recommand this: The calculus is intended to be

used in combination with the model search algorithm.

• In the implementation, understand which lemmas should be

forgotten. Find good heuristics. Develope an intuition of how

it searches, and what the proofs mean.

• Extend calculus? (theories, well-behaved infinite models)
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