
On the

Generation of Proofs
from the

Clausal Normal Form
Transformation

Hans de Nivelle
Max Planck Institut für Informatik

Saarbrücken Germany

1

Background Information

We want to generate proof objects from a resolution based theorem

prover.

A resolution prover:

• Transforms a first-order formula into clausal normal form.

• Applies resolution/paramodulation on the resulting clauses

until it derives a contradiction, or until it reaches a fixed point.

Example:

• Formula ∀x∃y P (x, y) ∧ ∃z∀t ¬P (z, t) is transformed into

clauses {P (x, f(x))}, {¬P (c, y)}.

• The clauses resolve into a contradiction through the instances

{P (c, f(c))}, {¬ P (c, f(y))}.

2

Generating Proof Objects

We want to generate the proof objects in Type Theory, (COQ)

because it is well-defined and easy to check.

At present, we can generate proof terms for the second part C → ⊥

from our theorem prover Bliksem. Still missing are the proofterms

for F → C.

There are 2 approaches:

• Verify the CNF-transformer.

Correct(Φ) ∧ Φ(F) = C.

• Let the CNF-transformer generate proof objects.

1st approach has the advantage, that once the check is complete,

there is no remaining computational cost.

2nd approach has the advantage that you can use partial

algorithms, and that you can compute directly on the meta logic.

3

Overview of the Talk

• Technical problems with generation of type theory proofs.

• Solution: The Replacement Calculus.

• How to handle Skolemization in a unified way.

• Conclusions.

4

Technical Problems with Proofs

Problem: Naively constructed proofs become too BIG.

Example: Transformation to NNF.

¬¬P ⇒ P

¬(P ∨ Q) ⇒ ¬P ∧ ¬Q,

¬(P ∧ Q) ⇒ ¬P ∨ ¬Q,

P → Q ⇒ ¬P ∨ Q.

(some more rules omitted)

Obvious approach: Implement the algorithm the way you would do

otherwise, but have it construct a proof by using a justifying axiom

for each replacement rule, and a context axiom for each logical

operator.

5

Axioms needed for NNF-transformation
tnd : ΠP:Prop ¬¬P → P

orneg : ΠP, Q:Prop (¬(P ∨ Q)) ↔ ¬P ∧ ¬Q

andneg : ΠP, Q:Prop (¬(P ∧ Q)) ↔ ¬P ∨ ¬Q

arrow : ΠP, Q:Prop (P → Q) ↔ (¬P ∨ Q)

inand : ΠP1, P2, Q1, Q2:Prop (P1 ↔ P2) → (Q1 ↔ Q2) →

P1 ∧ Q1 ↔ P2 ∧ Q2

inor : ΠP1, P2, Q1, Q2:Prop (P1 ↔ P2) → (Q1 ↔ Q2) →

P1 ∨ Q1 ↔ P2 ∨ Q2

refl : ΠP:Prop P ↔ P

trans : ΠP, Q, R:Prop (P ↔ Q) → (Q ↔ R) → (P ↔ R)

6

• It is easily checked that this method results in a proof of size

O(n3) (both in the input and in the result) That is too big for

practical purposes.

• The cost is dominated by the cost of building up contexts.

O(n2) in the size of the context.

If A1 ↔ A2 has a proof of size c, then

A1 ∧B1 ∧ · · · ∧Bn ↔ A2 ∧B1 ∧ · · · ∧Bn receives a proof of size

O(n2) + c.

(This is due to the fact that one has to sum up formula chains

A1, A1 ∧ B1, A1 ∧ B1 ∧ B2, . . . , A1 ∧ B1 ∧ · · · ∧ Bn and

A2, A2 ∧ B1, A2 ∧ B1 ∧ B2, . . . , A2 ∧ B1 ∧ · · · ∧ Bn)

• One can try to obtain sharing of contexts, but then the order

of replacements becomes important. That is no problem for

NNF, but for some transformations, the order is hard to

predict or control.

7

Solution: Replacement Calculus

We define a calculus for representing proofs with the following

features:

• Repeated build up of same context can be normalized away.

The programmer need not worry about the order of the

replacements.

• Drops an order in proof size, (because formulas on which a rule

is applied need not be mentioned)

• Can be translated into type theory in either quadratic time, or

in linear time (when using definitions).

The calculus is intended for representing the intermediate proofs,

not for the final result.

8

The replacement calculus proves equivalences of form A ≡ B. We

try to be as general as possible, so concrete instances of ≡ can be:

• (≈ D).

Equality on some domain D.

• ↔ .

Logical equivalence in the meta logic.

• λp1, p2: form (T p1) ↔ (T p2).

Logical equivalence in some object logic.

• λP1, P2:D → Prop Πd:D (P1 d) ↔ (P2 d).

Extensional equivalence of predicates on domain D.

9

Reflexivity:

A ≡ A
refl

Transitivity:
A ≡ B B ≡ C

A ≡ C
trans

Application:
A1 ≡ B1 A2 ≡ B2

A1 · A2 ≡ B1 · B2

appl

Abstraction:
(P x) ≡ (Q x)

(λx:X P) ≡ (λx:X Q)
abstr

x has to be a fresh variable.

Axiom:

A ≡ B
axiom,

(A ≡ B) has to be justified from the axioms.

10

Removal of reflexivity in contexts 1

refl refl

A1 ≡ A1 A2 ≡ A2

appl

A1 · A2 ≡ A1 · A2.

reduces into

refl

A1 · A2 ≡ A1 · A2

11

Removal of reflexivity in contexts 2

refl

A ≡ A

abstr

λx:X A ≡ λx:X A

reduces into

refl

λx:X A ≡ λx:X A

12

Removal of repeated context construction 1

A1 ≡ B1 A2 ≡ B2 B1 ≡ C1 B2 ≡ C2

appl appl

A1 · A2 ≡ B1 · B2 B1 · B2 ≡ C1 · C2

trans

A1 · A2 ≡ C1 · C2

reduces into

A1 ≡ B1 B1 ≡ C1 A2 ≡ B2 B2 ≡ C2

trans trans

A1 ≡ C1 A2 ≡ C2

appl

A1 · A2 ≡ C1 · C2

13

Removal of repeated context construction 2

A1 ≡ A2 A2 ≡ A3

abstr abstr

λx:X A1 ≡ λx:X A2 λx:X A2 ≡ λx:X A3

trans

λx:X A1 ≡ λx:X A3

reduces into

A1 ≡ A2 A2 ≡ A3

trans

A1 ≡ A3

abstr

λx:X A1 ≡ λx:X A3

14

Removal of reflexivity after/before trans

refl

A ≡ B B ≡ B

trans

A ≡ B

and

refl

A ≡ A A ≡ B

trans

both reduce into

A ≡ B

15

Making trans leftassociative

B ≡ C C ≡ D

trans

A ≡ B B ≡ D

trans

A ≡ D.

reduces into

A ≡ B B ≡ C

trans

A ≡ C C ≡ D

trans

A ≡ D.

16

• Every proof has a unique normal form, which has minimal size.

• Proofs can be translated into typetheory, resulting in a proof

with size quadratic in the depth.

• Proofs be translated into a proof of linear size, by introducing

definitions for subformulas. This is done by using definitions in

the formula chains as follows:

α1 := A1 ∧ B1, α2 := α1 ∧ B2, . . . , αn := αn−1 ∧ Bn,

β1 := A2 ∧ B1, β2 := β1 ∧ B2, . . . , βn := βn−1 ∧ Bn.

Such proofs will be checked in linear time, because definitions

are lazily expanded.

17

Generating Proofs for improved Skolemization

Standard Skolemization is the replacement of existential quantifiers

by fresh function symbols. F [∃y P (x, y)] is replaced by

F [P (x, f(x))], where f is a new function symbol, the variables x

are the free variables of P (without y).

There are two ways to transform a refutation of a Skolemized

formula into a refutation of the original formula:

• Use a choice (or ε) axiom to prove the Skolemized formula from

the original formula.

• Eliminate the Skolem function from the proof.

(1) is efficient but ugly. (2) is elegant but inefficent.

18

Whatever method is chosen, there is the problem of handling

optimized and strong Skolemization.

Strong Skolemization can be applied on formulas of the following

form:

F [∃y [P1(x1, y) ∧ P2(x2, y) ∧ · · · ∧ Pn(xn, y)]],

where x1 ⊆ x2 ⊆ · · · ⊆ xn ⊆ x.

The result is:

F [[∀(x\x1) P1(x, f(x))] ∧ [∀(x\x2) P2(x, f(x))] ∧ · · · ∧

[∀(x\xn) Pn(x, f(x))]].

19

Optimized Skolemization can be applied on formulas of the form:

F [∃y P1(x, y) ∧ P2(x, y)] ∧ ∃y P1(x, y).

The result is F [P2(x, f(x))] ∧ P1(x, f(x)).

Problem: What kind of choice functions does one need for this?

How many? (or alternatively, how can one delete such

Skolemizations from proofs?)

Solution: They can be reduced to standard Skolemization.

This is done through (yet) another type of Skolemization, called

stratified Skolemization.

20

Stratified Skolemization is defined on formulas of the following form

∀x C1(x) → ∃y[P1(x, y)] ∧

∀x C2(x) → ∃y[P1(x, y) ∧ P2(x, y)] ∧

· · ·

∀x Cn(x) → ∃y[P1(x, y) ∧ P2(x, y) ∧ · · · ∧ Pn(x, y)],

in case that

∀x Cn(x) → Cn−1(x), Cn−1(x) → Cn−2(x), · · · , C2(x) → C1(x).

The result is:

∀x C1(x) → P1(x, f(x)) ∧

∀x C2(x) → P2(x, f(x)) ∧

· · ·

∀x Cn(x) → Pn(x, f(x)).

21

Theorem Stratified Skolemization can be reduced to standard

Skolemization in first-order Logic.

precise formulation: For every formula F on which stratified

Skolemization is applicable, there exists a formula G that can be

constructed in linear time, that is logically equivalent to F, such

that the ordinary Skolemization of G equals the stratified

Skolemization of F.

Proof:

Take G := ∀x ∃y (C1(x) → P1(x, y)) ∧ · · · ∧ (Cn(x) → Pn(x, y)).

22

Theorem Both optimized and strong Skolemization can be reduced

to stratified Skolemization.

Consequence No additional choice axioms are needed. (or

alternatively: No new proof transformation techniques are needed)

Question Does stratified Skolemization have any usefulness on its

own?

23

Conclusions

• We introduced techniques that make explicit proof generation

for the CNF-transformation realistic. The techniques are

general. They can be used also for other automated proof

search procedures.

• We reduced the improved Skolemization techniques to standard

Skolemization.

• Keep an eye on http://www.mpi-sb.mpg.de/~bliksem to

see how implementation proceeds.

24

