
A study of Landau’s Grundlagen der Analysis

and
AUTOMATH

Wroc law, November 23d, 2007

Hans de Nivelle

1

’Bitte vergiss alles, was Du auf der Schule gelernt hast; denn Du

hast es nicht gelernt’

2

(I give you some time to forget)

3

Why this Talk?

• In the ’Grundlagen der Analysis’ (Foundations of Analysis), of

1929, Edmund Landau introduces the natural numbers, the

integers, the rational numbers and the reals, from Peano

arithmetic. (and some implicit logical assumptions)

• In Theorem 4, addition is introduced, and it is shown that this

operation is well-defined. (using the axioms x + 0 = x and

x + succ(y) = succ(x + y).)

• The definition of + is a recursive function definition using the

inductive type defined by Nat = 0 : Nat | succ : Nat → Nat.

The possibility of recursive definitions is based on the fact that

the datastructure is freely generated.

However, Landau does make not use of this fact when he

introduces +.

4

Why this Talk (2)?

• Automath is an artificial language that was designed by N.G.

de Bruijn around 1967. During the following ten years, several

dialects of it were defined and implemented. In 1977, the

complete Grundlagen were formalized in AUT-QE.

• Since the verifier was implemented in a low level language, the

verifier disappeared with the computer.

• But fortunately, the text was not lost. In 1992, Freek Wiedijk,

managed to recover the text of the Grundlagen. In (probably)

1997, he reimplemented a checker in C, which can be

downloaded.

5

Reconstruction of Satz 1-4

• I try to follow the reasoning of Landau, but try to make

reasoning precise.

• Replace Nat = {1, 2, 3, 4, . . .} by Nat = {0, 1, 2, 3, 4, . . .}.

• Use λ-calculus and higher-order logic, instead of set theory.

6

Assumptions

• Typed higer-order logic with built-equality, with standard

equality rules, and the usual reductions.

• Function introduction:

(∀x : X ∃!y : Y P (x, y)) → ∃f : X → Y ∀x : X P (x, f(x)).

• Function extensionality:

∀f1, f2 : X → Y (∀x : X f1(x) = f2(x)) → f1 = f2.

• The type Nat, the symbol 0 : Nat, and the symbol

succ : Nat → Nat.

7

Assumptions (2)

• The Peano axioms:

∀x : Nat succ(x) 6= 0.

∀x, y : Nat succ(x) = succ(y) → x = y.

∀P : Nat → Prop P (0) ∧ (∀n : Nat P (n) → P (succ(n)))

→ ∀x : Nat P (x).

8

Satz 1

∀x, y : Nat x 6= y → succ(x) 6= succ(y).

Proof: Contraposition of axiom.

Satz 2

∀x : Nat succ(x) 6= x.

Proof:

Induction Base:

succ(0) 6= 0 follows from axiom. Induction Step: Assume

succ(x) 6= x. From Satz 1 follows succ(succ(x)) 6= succ(x).

9

Sat 3A

∀x : Nat x 6≈ 0 → ∃y : Nat succ(y) = x.

Proof: Induction.

Satz 3B

∀x : Nat x 6≈ 0 →

∀y1, y2 : Nat succ(y1) = x → succ(y2) = x → y1 = y2.

Proof: Follows from axiom.

10

Satz 4 (zugleich Definition 1)

Auf genau eine Art lässt sich jedem Zahlenpaar x, y eine natürliche

Zahl, x + y genannt (+ sprich: plus), so zuordnen dass,

1. x + 1 = x′ für jedes x.

2. x + y′ = (x + y)′, für jedes x und jedes y.

x + y heisst die Summe von x und y oder die durch Addition von y

zu x entstehende Zahl.

11

Satz 4 (at the same time Definition 1)

(In exactly one way it is possible to assign to every pair of numbers

x, y, a natural number called x + y, (pronounce ’plus’) such that

1. x + 1 = x′ for every x.

2. x + y′ = (x + y)′ for every x and every y.

x + y is called the sum of x and y, or the number that is obtained

through addition of y to x.)

For f : Nat → Nat → Nat, let Π(f) denote

∀x : Nat f(x, 0) = x ∧ ∀x, y : Nat f(x, succ(y)) = succ(f(x, y)).

Then Satz 4A = ∃f : Nat → Nat → Nat Π(f),

Satz 4B = ∀f1, f2 : Nat → Nat → Nat Π(f1) → Π(f2) → f1 = f2.

12

Zunächst zeigen wir dass es bei jedem festen x höchstens eine

Möglichkeit gibt, x + y für alle y so zu definieren dass

x + 1 = x′,

und

x + y′ = (x + y)′ für jedes y.

First we show that for every fixed x, there is at most one possibility

to define x + y for all y, such that

x + 1 = x′,

and

x + y′ = (x + y)′ for every y.

13

For x : Nat and f : Nat → Nat, let

Σ(x, f) := f(0) = x ∧ ∀y : Nat f(succ(y)) = succ(f(y)).

First we show:

∀x : Nat ∀A, B : Nat → Nat Σ(x, A) ∧ Σ(x, B) → A = B.

We assumed extensionality, so we show:

∀x : Nat ∀A, B : Nat → Nat,

Σ(x, A) ∧ Σ(x, B) → ∀y : Nat A(y) = B(y).

We fix x, A, B, assume Σ(x, A), Σ(x, B) and use induction on y :

• Obviously A(x) = x and B(x) = x.

• Assume A(y) = B(y). Then

A(succ(y)) = succ(A(y)) = succ(B(y)) = B(succ(y)).

14

Now comes the mysterious part:

Wir zeigen jetzt, dass es zu jedem x eine Möglichkeit gibt, x + y für

alle y so zu definieren, dass

x + 1 = x′,

und

x + y′ = (x + y)′ für jedes y.

We now show that there exists for every x, a possibility to define

x + y for every y, such that

x + 1 = x′,

and

x + y′ = (x + y)′ for every y.

15

Remember that, with parameters x : Nat and f : Nat → Nat,

Σ(x, f) := f(0) = x ∧ ∀y : Nat f(succ(y)) = succ(f(y)).

We show that ∀x : Nat ∃f : Nat → Nat, Σ(x, f).

The proof uses induction on x :

• For 0, take f = λx : Nat x.

• Assume for x, there is an f, s.t.

f(0) = x, and ∀y : Nat f(succ(y)) = succ(f(y)).

Then for succ(x) take g = λy : Nat succ(f(y)). We show that

Σ(succ(x), g):

g(0) = succ(f(0)) = succ(x).

g(succ(y)) = succ(f(succ(y))) = succ(succ(f(y)) = succ(g(y)).

16

Same part of the existence proof for multiplication

With parameters x : Nat and f : Nat → Nat,

Σ′(x, f) := f(0) = 0 ∧ ∀y : Nat f(succ(y)) = f(y) + x.

We show that ∀x : Nat ∃f : Nat → Nat, Σ′(x, f).

This proof also uses induction on x :

• For 0, take f = λx : Nat 0.

• Assume for x, there is an f, s.t.

f(0) = 0, and ∀y : Nat f(succ(y)) = f(y) + x.

Then for succ(x) take g = λy : Nat f(y) + y. We show that

Σ′(succ(x), g). First: g(0) = f(0) + 0 = 0.

Second:

g(succ(y)) = f(succ(y)) + succ(y) = f(y) + x + succ(y), and

g(y) + succ(x) = f(y) + y + succ(x) = f(y) + succ(y) + x.

17

Both proofs don’t use the axioms about Nat being a free datatype.

It took me some time to accept that both proofs are actually

correct.

Especially, the multiplication proof, I find incomprehensible.

The proofs proceed ’in the wrong direction’: In the case of +, for

each succ(x), the function λy : Nat succ(x) + y is constructed from

the function λy : Nat x + y used for x. For 0, the function is

λy : Nat y. (One would expect, for each x, a definition by recursion

on y)

We are going to look into the AUTOMATH text to see if

Van Benthem Jutting did not accidentily use additional principles

(e.g. a recursion axiom)

18

A Short description of AUTOMATH

Automath is a proof checker based on the Curry-Howard

isomorphism. Is has no built-in datatypes, or inductive types.

Nearly all lines in an Automath text have the following form:

Proper Definition: [a1 : A1, . . . , ap : Ap] g := t : T.

g must be an identifier, which has not been defined before.

The meaning is: In context a1 : A1, . . . , ap : Ap, define g as t, which

has type T. (The automath checker checks that t does have the

pretended type)

19

Use of Parameters

The ai act like function arguments. Let t1, . . . , tp be a sequence of

terms. Let Σ be the (parallel) substitution a1 := t1, . . . , ap := tp

If

⊢ t1 : A1Θ,

[t1 : A1Θ] ⊢ t2 : A2Θ,

[t1 : A1Θ, t2 : A2Θ] ⊢ t3 : A3Θ,

· · ·

[t1 : A1Θ, t2 : A2Θ, . . . , tp−1 : Tp−1Θ] ⊢ tp : TpΘ,

then g(t1, . . . , tn) : TΘ.

20

Automath distinguishes application of parameters from usual

function application. To me, this distinction seems useless, and it

causes some problems as well.

(For example, g could have been defined as

g := λa1 : A1 · · · an : Ap t

of type

Πa1 : A1 · · ·an : Ap T.

In Automath, this Π-type can be coerced into every type of form

Πai : Ai · · ·an : Ap T,

which sometimes has strange consequences.

21

Other Automath Constructs

Assumptions are like definitions, but without witness. They have

form [a1 : A1, . . . , ap : Ap] g := prim : T.

In addition, there is a paragraph mechanism, which is similar to

C++ namespaces.

+name : Start paragraph with name.

−name : End paragraph with name.

+ ∗ name : Continue in paragraph with name.

The extended identifier id”.p1.p2” denotes id of paragraph p2 which

occurs in p1. (Modern notation would be p1 :: p2 :: id)

22

Other Automath Constructs

< t > p : Application of p on t.

[x : X]t : λx : X t.

23

An ugly thing: Implicit Contexts

Contexts in Automath are implicit: When a context is declared, it

becomes the default context. This means that it will be the context

of future definitions until a new context is declared.

Contexts are controlled by the ‘@‘-symbol.

• ′@′[a1 : A1, . . . , ap : Ap]. Make [a1 : A1, . . . , ap : Ap] the default

context.

• a′@′[a1 : A1, . . . , ap : Ap]. It must be the case that a has a

declaration in the current default context. Let Γ + [a : A] be

obtained from the default context by deleting all declarations

after a.

Then Γ + [a : A, a1 : A1, . . . , ap : Ap] will be the new default

context. a

aThis rule is the main difficulty when reading an Automath text

24

• [a1 : A1, . . . , ap : Ap]. Let Γ be the present default context.

From now on, the default context will be

Γ + [a1 : A1, . . . , ap : Ap].

25

Exercise in Automath Contexts

@[a1 : A1, a2 : A2]

g1 := t1 : T1

g2 := t2 : T2

@[b : B]

g3 := t3 : T3

a2@[c : C]

g4 := t4 : T4

a2@

g5 := t5 : T5

g6 := t6 : T6

[b : B]

g7 := t7 : T7

(g3 has context [b : B]) (g1, g2, g5, g6 have [a1 : A1, a2 : A2]) (g4

has [a1 : A1, a2 : A2, c : C]) (g7 has [a1 : A1, a2 : A2, b : B])

26

Selected Definitions from the Grundlagen

(I have sorted out the contexts, replaced the paragraph notation by

namespace notation, removed quotes around prim/set/prop, and

filled in implicit arguments)

The beginning of the file

[a:prop, b:prop] imp := [x:a] b prop

% Defines a -> b as function space.

[a:prop, b:prop, a1: a, i: imp(a,b)] mp := <a1> i : b

% Modus ponens through function application.

[a:prop] refimp := [x:a] x : imp(a,a)

% reflexivity of implication.

[a:prop, b:prop, c:prop, i : imp(a,b), j:imp(b,c)]

trimp := [x: a] << x > i > j > : imp(a,c)

% transitivity of implication.

27

Some Propositional Operators

[] con := prim : prop

% contradiction as primitive notion.

[a : prop] not := imp(a, con) : prop

% In the file, a was an implicit argument.

[a: prop] wel := not(not(a)) : prop

[a: prop, a1 : a] weli := [x : not(a)] <a1> x : wel(a)

[a: prop, w : wel(a)] et := prim : a

% Introduces removal of double negation.

[] obvious := imp(con, con) : prop

[a : prop, b : prop] ec := imp(a, not(b)) : prop

[a : prop, b : prop] and := not(ec(a, b)) : prop

[a : prop, b : prop] or := imp(not(a), b) : prop

28

Quantifiers in Automath

[sigma : type, p : [x : sigma] prop] all := p : prop

% This definition is possible because Automath

% allows coercion from [x:sigma] prop to prop.

% As a consequence, predicates can have inhabitants.

% t : P implies <x> t : <x> P.

[sigma : type, p : [x : sigma] prop]

non := [x : sigma] not(<x> p) : [x : sigma] prop

% non(sigma,p) means lambda x. not(p(x)), which in

% Automath not only has type [x:sigma] prop, but

% also prop.

[sigma : type, p : [x : sigma] prop]

some := not(non(p)) : prop.

29

Equality in Automath

[sigma : type, s : sigma, t : sigma] is := prim : prop

[sigma : type, s : sigma] refis := prim : is(s,s)

[sigma : type, p : [x:sigma] prop, s:sigma, t:sigma,

sp: <s> p, i : is(s,t)] isp := prim : <t> p.

% Equality replacement rule.

[sigma: type, s:sigma, t:sigma] [i : is(s,t)]

symis := isp([x:sigma] is(x,s), s,t, refis(s), i)

: is(t,s)

[sigma: type, s:sigma, t:sigma, u:sigma,

i:is(s,t), j:is(t,u)]

tris := isp([x:sigma] is(x,u), t, s, j, symis(i))

: is(s,u)

30

Introduction of New Objects

[sigma: type, p : [x:sigma] prop]

amone := [x :sigma][y: sigma]

[u : <x> p] [v: <y> p] is(x,y) : prop

[sigma: type, p : [x:sigma] prop]

one := and(amone(sigma,p), some(sigma,p)) : prop

% at most one and exactly one.

[sigma:type, p : [x:sigma] prop] [o1: one(sigma,p)]

ind := prim : sigma

[sigma:type, p : [x:sigma] prop] [o1: one(sigma,p)]

oneax := prim : <ind> p

% If there is exactly one x, for which p(x) holds, and

% o1 is a proof of this fact, then ind(sigma, p, o1)

% is this x. Note that ind has implicit parameters.

31

Functional Extensionality Axiom

[sigma: type, tau: type,

f: [x : sigma] tau, g : [x : sigma] tau,

i : [x : sigma] is(tau, <x> f, <x> g)]

fisi := prim : is([x : sigma] tau, f, g)

32

Sets in Automath

[sigma: type] set := prim : type

[sigma: type, s: sigma, s0 : set] esti := prim : prop

% esti(sigma, s, s0) means: s in s0.

[sigma: type, p: [x: sigma] prop] setof := prim : set

[sigma: type, p: [x: sigma] prop, s: sigma, sp : <s>p]

estii := prim : esti(sigma, s, setof(p))

[sigma: type, p: [x: sigma] prop, s: sigma,

e: esti(sigma, s, setof(p))] estie := prim : <s> p

33

Some of the preliminary definitions

[] nat := prim : type

% First, some polymorphic operators are instantiated:

[x : nat, y : nat] is := e::is(nat, x, y) : prop

[x : nat, y : nat] nis := not(is(x,y)) : prop

[x : nat, s : set(nat)] in : estie(nat, x, s) : prop

[p : [x:nat] prop] some := l::some(nat,p) : prop

[p : [x:nat] prop] all := l:all(nat,p) : prop

[p : [x:nat] prop] one := l:one(nat,p) : prop

% Two prominent inhabitants of nat appear on the scene:

[] 1 := prim: nat

[suc] := prim [x : nat] : nat

34

[x : nat] [y:nat] [i : is(x,y)]

ax2 := isf(nat, nat, suc, x, y, i) :

is(<x> suc, <y> suc)

% (ax2 is vacuous if one uses functional notation)

[] ax3 := prim: [x:nat] nis(<x> suc, 1)

[] ax4 := prim: [x:nat] [y:nat]

[u : is(<x> suc, <y> suc)] is(x,y)

[s : set(nat)] cond1 := in(1, s) : prop

[s : set(nat)] cond2 := all([x:nat]

imp(in(x,s), in(<x> suc, s))) : prop

[] ax5 := prim :

[s : set(nat)] [u : cond1(s)] [v : cond2(s)]

[x : nat] in(x, s)

35

Proof of Satz 4

[x: nat, f: [y : nat] nat]

prop1 := all([y : nat] is(<<y> suc > f,

<< y > f > suc)) : prop

[x: nat, f: [y : nat] nat]

prop2 := and(is(<1> f, <x> suc), prop1) : prop

[x: nat, a : [y : nat] nat, b : [y : nat] nat,

pa: prop2(a), pb : prop2(b), y : nat]

prop3 := is(<y> a, <y> b)

[x : nat] prop4 := 1::some([y : nat] nat,

[z : [y : nat] nat] prop2(z)) : prop

36

[x: nat] aa := (proof omitted) :

amone([y : nat] nat,

[z : [y : nat] nat] prop2(z))

[x : nat] bb := (proof omitted) : prop4(x)

[x : nat] satz4 :=

onei([y : nat] nat,

[z : [y : nat] nat] 24:prop2(z),

24::aa, 24::bb) :

e::one([y : nat] nat,

[z : [y : nat] nat]

and(is(< 1 > z, <x> suc),

all([y : nat]

is(<<y>succ> z, <<y>z>suc))))

37

[x : nat] plus :=

ind([y : nat] nat,

[z : [y : nat] nat] 24::prop2(z),

satz4) : [y : nat] nat

% For every x, plus(x) is the unique function f

% that satisfies Sigma(x,f)

[x : nat, y : nat] pl := <y> plus(x) : nat

% The proof and the introduction of + are completely

% accurate!

38

Conclusions

• There is nothing wrong in the Grundlagen, but addition

becomes only what it is supposed to be in Satz 7 and 8.

• I am quite impressed by the maturity of the AUTOMATH

system, especially if you consider how difficult it was to

experiment with implementations in those days.

• The reason that addition and multiplication can be defined

without referring to free generation, must be the fact that they

are definable in non-standard models as well. (A non-standard

model is defined by the smallest two numbers n, m for which

sn(0) = sm(0), and n 6= m)

Are there other meaningful functions that are definable in

non-standard models?

Can they be formally defined in a similar way?

39

Recommendations for AUTOMATH

Actually, van Benthem Jutting’s verification is quite readable, if

one ignores the syntactic difficulties:

• The main problem when reading AUTOMATH is finding out in

which context a definition is taking place.

Instead of the linking mechanism with ‘@‘, one could have the

following command, which has explicit scoping:

Assume [x1 : t1 , ..., xn : tn] in

{

}

• Implicit arguments should be forbidden. (Automath has a rule

that allows omission of arguments when they are equal to the

parameters at the moment of definition.

40

• The paragraph mechanism should be replaced by more modern

notation using C++ style namespaces. (th4"e.inj" can be

replaced by e::inj::th4 or e.inj.th4)

• Instead of using end-of-line as terminator, ’.’ or ’;’ should be

used.

• I think that the inclusion

A1 → · · · → Ap → Prop ⊆ Ai → · · · → Ap → Prop was not a

good idea (but for readability, it is not so important, and it is

much harder to change this)

Maybe it would be nice to reformat Van-Benthem Jutting’s

translation. One could obtain a readable result.

41

