Theorem Proving in Logic with Partial Functions

Wrocław, 6 december 2013
Hans de Nivelle
University of Wrocław, Poland

Partial Functions

We are surrounded by partial functions:

$$
\forall x: \text { Real }(\sqrt{x})^{2}=x
$$

$\forall L:$ List $\operatorname{cons}(\operatorname{first}(L), \operatorname{rest}(L))=L$,
$\forall m, n:$ Nat $0 \leq(m \bmod n) \wedge(m \bmod n)<|n|$.

Can be handled by relativization:

$$
\forall x: \text { Real } x \geq 0 \rightarrow(\sqrt{x})^{2}=x,
$$

$\forall L:$ List $L \neq \operatorname{nil} \rightarrow \operatorname{cons}(\operatorname{first}(L), \operatorname{rest}(L))=L$,
$\forall m, n$:Nat $n \neq 0 \rightarrow 0 \leq(m \bmod n) \wedge(m \bmod n)<|n|$.

One can also relativize the types:

$$
\forall x \operatorname{Real}(x) \wedge x \geq 0 \rightarrow(\sqrt{x})^{2}=x
$$

$\forall x \operatorname{List}(x) \wedge L \neq \operatorname{nil} \rightarrow \operatorname{cons}(\operatorname{first}(L), \operatorname{rest}(L))=L$,
$\forall m, n \operatorname{Nat}(m) \wedge \operatorname{Nat}(n) \wedge n \neq 0 \rightarrow 0 \leq(m \bmod n) \wedge(m \bmod n)<|n|$.

Is it really the same?

Yes, but only because the formulas are correct.
When formulas are not correct, their relativizations have meanings that are either too weak or too strong.

Built-in (to the logic) typing ensures that a formula becomes unusable when the typing rules are not respected. With relativization, strictness is lost.

If you are certain that all formulas that you use are correct, then you don't need type checking,
or more precisely:
When a formula has been typechecked, its types can be replaced by relativizations without changing the meaning.

Putting Preconditions in the Types?

For partial functions, one wants the same strictness as simple types. Include preconditions in the types:

$$
\forall x: \text { Real } \geq 0 \quad(\sqrt{x})^{2}=x
$$

$\forall L:$ List $\neq \operatorname{nil} \operatorname{cons}(\operatorname{first}(L), \operatorname{rest}(L))=L$,
$\forall m$: Nat $n:$ Nat $\neq 0 \quad 0 \leq(m \bmod n) \wedge(m \bmod n)<|n|$.

There is no general form of preconditions:

$$
\forall m: \text { Nat } m \neq 0 \rightarrow \exists n: \text { Nat } \leq m \quad m-n=1
$$

PCL

Introduce new truth value e for meaningless formulas. Split \rightarrow into \rightarrow and []. Split \wedge into \rangle and \wedge.

$$
\forall x[\operatorname{Real}(x) \wedge x>0](\sqrt{x})^{2}=x
$$

$\forall x[\operatorname{List}(L) \wedge L \neq \operatorname{nil}] \operatorname{cons}(\operatorname{first}(L), \operatorname{rest}(L))=L$,
$\forall m, n[\operatorname{Nat}(m) \wedge \operatorname{Nat}(n)][n \neq 0] 0 \leq(m \bmod n) \wedge(m \bmod n)<|n|$,

$$
\forall m[\operatorname{Nat}(m)] m \neq 0 \rightarrow \exists n\langle\operatorname{Nat}(n)\rangle\langle m \geq n\rangle m-n=1
$$

PCL-operators

\neg : Argument must be well-typed. For the rest, semantics is as usual.
$\rightarrow, \wedge, \vee, \leftrightarrow$: Both arguments must be well-typed. For the rest, semantics is as usual.
$[A] B$: First formula A must be well-typed. If A is true, then second formula must be well-typed. If $[A] B$ is well-typed, it means the same as $A \rightarrow B$.
$\langle A\rangle B$: First formula A must be well-typed. If A is true, then second formula must be well-typed. If $\langle A\rangle B$ is well-typed, it means the same as $A \wedge B$.
$\forall x P(x)$: Every $I_{d}^{x}(P(x))$ must be well-typed. For the rest, semantics is as usual.
$\exists x P(x)$: Every $I_{d}^{x}(P(x))$ must be well-typed. For the rest, semantics is as usual.

Operators $\wedge, \vee, \rightarrow, \leftrightarrow, \neg, \forall, \exists$ are strict.
Operators [] and \rangle are lazy.
Equality $=$ is total, i.e. always well-typed. (One can define weaker forms of equality.)
The Prop() operator is always well-typed. It is true if its argument is well-typed.

Interpretations

Definition: An interpretation $I=(D, \mathbf{f}, \mathbf{t}, \mathbf{e},[])$ is defined by:

- A domain D.
- Two distinct truth values \mathbf{f} and \mathbf{t}.
- An error value \mathbf{e}.
- A function [] that interprets the function symbols: If f is a function symbol with arity n, then $[f]$ is a total function from D^{n} to D.
- A function [] that interprets the predicate symbols: If p is a predicate symbol with arity n, then $[p]$ is a total function from D^{n} to $\{\mathbf{f}, \mathbf{e}, \mathbf{t}\}$.

Semantics of Binary Operators
$\left\rangle: \begin{array}{|c|c|c|}\hline \mathbf{f} & \mathbf{f} & \mathbf{f} \\ \hline \mathbf{e} & \mathbf{e} & \mathbf{e} \\ \hline \mathbf{f} & \mathbf{e} & \mathbf{t} \\ \hline\end{array} \quad \wedge: \begin{array}{|c|c|c|}\hline \mathbf{f} & \mathbf{e} & \mathbf{f} \\ \hline \mathbf{e} & \mathbf{e} & \mathbf{e} \\ \hline \mathbf{f} & \mathrm{e} & \mathbf{t} \\ \hline\end{array}\right.$

[]$:$\begin{tabular}{|c|c|c|}
\hline \mathbf{t} \& \mathbf{t} \& \mathbf{t}

\hline \mathbf{e} \& \mathbf{e} \& \mathbf{e}

\hline \mathbf{f} \& \mathbf{e} \& \mathbf{t}

\hline

$\rightarrow:$

\hline \mathbf{t} \& \mathbf{e} \& \mathbf{t}

\hline \mathbf{e} \& \mathbf{e} \& \mathbf{e}

\hline \mathbf{f} \& \mathbf{e} \& \mathbf{t}

\hline

$\quad \vee:$

\hline \mathbf{f} \& \mathbf{e} \& \mathbf{t}

\hline \mathbf{e} \& \mathbf{e} \& \mathbf{e}

\hline \mathbf{t} \& \mathbf{e} \& \mathbf{t}

\hline
\end{tabular}

Unary Operators

Quantifiers

Quantifiers must be associated to the modified \vee and \wedge :
For $\forall x P(x)$ and $\exists x P(x)$, construct $S=\left\{I_{d}^{x}(P(x)) \mid d \in D\right\}$. Then select most preferred value from S, using the preferences:

$$
\forall: \mathbf{e}>\mathbf{f}>\mathbf{t}, \quad \exists: \mathbf{e}>\mathbf{t}>\mathbf{f} .
$$

Contexts
PCL reasons with contexts:
$\forall x \operatorname{Prop}(\operatorname{Nat}(x))$,
Nat(0),
$\forall x \operatorname{Nat}(x) \rightarrow \operatorname{Nat}(\operatorname{succ}(x))$,
$\forall x y \operatorname{Nat}(x) \wedge \operatorname{Nat}(y) \rightarrow \operatorname{Prop}(x \leq y)$,
$\forall x y[\operatorname{Nat}(x), \operatorname{Nat}(y), \operatorname{Nat}(z)] x \leq y \wedge y \leq z \rightarrow x \leq z$,
$\forall x y[\operatorname{Nat}(x), \operatorname{Nat}(y)] y \leq x \rightarrow \operatorname{Nat}(x-y)$,
$\forall x y[\operatorname{Nat}(x), \operatorname{Nat}(y)] x \leq y \rightarrow \exists z\langle\operatorname{Nat}(z), x \geq z\rangle x-z=y$.

Definition: We call an object of form $\left\|\Gamma_{1}, \ldots, \Gamma_{m}\right\|$, in which all Γ_{j} are formulas, and in which some Γ_{j} are possibly marked with a ${ }^{\theta}$, a context.

The formulas that are marked with θ are theorems, the others are assumptions.

Example

$$
\left\|\operatorname{Prop}(A), \operatorname{Prop}(B), A, B,(A \wedge B)^{\theta}, \ldots\right\|
$$

is a context.
A context is strongly valid if in every interpretation $I=(D, \mathbf{f}, \mathbf{t}, \mathbf{e},[])$, for which there is an i, s.t. $I\left(\Gamma_{i}\right) \neq \mathbf{t}$, the first such i satisfies the following condition:

- Γ_{i} is not marked as a theorem, and $I\left(\Gamma_{i}\right)=\mathbf{f}$.

Examples

Not strongly valid:

$$
\left\|A, A^{\theta}\right\|
$$

Strongly valid:

$$
\left\|\operatorname{Prop}(A), A, A^{\theta}\right\|
$$

Not strongly valid:

$$
\left\|\operatorname{Prop}(A), A,(A \vee B)^{\theta}\right\|
$$

Strongly valid:

$$
\begin{gathered}
\left\|\operatorname{Prop}(A), \operatorname{Prop}(B), A,(A \vee B)^{\theta}\right\| \\
\left\|\operatorname{Prop}(A), \operatorname{Prop}(B), \neg B, \neg A \vee B,(\neg A)^{\theta}\right\|
\end{gathered}
$$

PCL has strictness for types and preconditions: Nothing can be done with a formula that does not respect the types of the preconditions.

It has truth-value based semantics.
There is no restriction on the form of types or preconditions.

Theorem Proving in PCL

Intuition: Check type correctness of the formulas. After that, replace by relativizations, and use a standard approach for classical logic.
\Rightarrow Almost possible, but one needs Kleene logic.
Kleene logic can be used for type checking and for proving.

Kleene Logic

The semantics of \neg and Prop is defined by the following truth tables:

The semantics of the operators \oplus, \otimes is defined by the following truth tables:

$\oplus:$| \mathbf{f} | \mathbf{e} | \mathbf{t} |
| :---: | :---: | :---: |
| \mathbf{e} | \mathbf{e} | \mathbf{t} |
| \mathbf{t} | \mathbf{t} | \mathbf{t} |

$\otimes:$| \mathbf{f} | \mathbf{f} | \mathbf{f} |
| :---: | :---: | :---: |
| \mathbf{f} | \mathbf{e} | \mathbf{e} |
| | \mathbf{f} | \mathbf{e} |
| \mathbf{t} | | |

\rightarrow and \leftrightarrow can be defined in the usual way.

Kleene Logic (2)
The semantics of the quantifiers is defined by the following preferences:

$$
\Pi: \mathbf{f}>\mathbf{e}>\mathbf{t}, \quad \Sigma: \mathbf{t}>\mathbf{e}>\mathbf{f} .
$$

In order to evaluate a quantified formula $Q x F(x)$ in interpretation I, form the set $S=\left\{I_{d}^{x}(F(x))\right\}$. (The set of possible truth values that $F(x)$ can have in I, by picking a value for x.)

After that, select the most preferred value for the quantifier in the list above from S.
Π is connected to \otimes, while Σ is connected to \oplus.

Expressivity of Kleene Logic

Kleene logic may seem different from classical logic, but the differences are minimal:

One can ask questions of the following form:
Is P satisfiable? (Is there a 3 -valued interpretation I, in which $I(P)=\mathbf{t}$?)

Do P_{1}, \ldots, P_{n} imply Q ? (Is, in every 3 -valued interpretation where $I\left(P_{1}\right)=\cdots=I\left(P_{n}\right)=\mathbf{t}$, also $I(Q)=\mathbf{t}$?)

Let $T(P)$ denote $I(P)=\mathbf{t}$, let $F(P)$ denote $I(P)=\mathbf{f}$.
$T()$ and $F()$ can be viewed as logical operators, whose result is in $\{\mathbf{f}, \mathbf{t}\}$.

Equivalences involving $T()$ and $F()$:

$$
\begin{array}{ll}
T(P \otimes Q) & T(P) \wedge T(Q) \\
F(P \otimes Q) & F(P) \vee F(Q) \\
T(P \oplus Q) & T(P) \vee T(Q) \\
F(P \oplus Q) & F(P) \wedge F(Q) \\
T(\neg P) & F(P) \\
F(\neg P) & T(P) \\
T(\Pi x P(x)) & \forall x T(P(x)) \\
F(\Pi x P(x)) & \exists x F(P(x)) \\
T(\Sigma x P(x)) & \exists x T(P(x)) \\
F(\Sigma x P(x)) & \forall x F(P(x)) \\
\operatorname{Prop}(A) & T(A) \vee F(A)
\end{array}
$$

We see that Kleene logic is only slightly more expressive than classical logic.

The only only point where one can find any difference at all is in the atoms.

For atoms $p\left(t_{1}, \ldots, t_{n}\right)$, define

$$
\begin{aligned}
p_{\mathbf{f}}\left(t_{1}, \ldots, t_{n}\right) & :=F\left(p\left(t_{1}, \ldots, t_{n}\right)\right) \\
p_{\mathbf{t}}\left(t_{1}, \ldots, t_{n}\right) & :=T\left(p\left(t_{1}, \ldots, t_{n}\right)\right) \\
p_{\mathbf{e}}\left(t_{1}, \ldots, t_{n}\right) & :=\neg \operatorname{Prop}\left(p\left(t_{1}, \ldots, t_{n}\right)\right),
\end{aligned}
$$

and Kleene logic is (almost) gone.
\Rightarrow theorem proving in Kleene logic is easy!
Use superposition, tableaux, or geometric logic.

Sequents, Strong Representation

Definition: A sequent is a set of formulas $\left\{F_{1}, \ldots, F_{n}\right\}$. For an interpretation I, we define $I\left(\left\{F_{1}, \ldots, F_{n}\right\}\right)=\bigotimes_{1 \leq i \leq n} I\left(F_{i}\right)$.

Let S_{1}, \ldots, S_{n} be a set of sequents. We define $I\left(S_{1}, \ldots, S_{n}\right)=\bigoplus_{1 \leq i \leq n} I\left(S_{i}\right)$.

We say that a set of sequents S_{1}, \ldots, S_{n} represents a property P if $P \Leftrightarrow I\left(S_{1}, \ldots, S_{n}\right) \neq \mathbf{t}$.

We say that a set of sequents S_{1}, \ldots, S_{n} strongly represents a property P if

$$
\left\{\begin{array}{l}
P \Rightarrow I\left(S_{1}, \ldots, S_{n}\right)=\mathbf{f}, \\
\neg P \Rightarrow I\left(S_{1}, \ldots, S_{n}\right)=\mathbf{t} .
\end{array}\right.
$$

It is important to see the redundancy in strong representation!

From PCL to Kleene Logic
Definition: Let $\left\|\Gamma_{1}, \ldots, \Gamma_{n}\right\|$ be a context. Recursively define $E\left(\left\|\Gamma_{1}, \ldots, \Gamma_{n}\right\|\right)$, the expansion of $\left\|\Gamma_{1}, \ldots, \Gamma_{n}\right\|$, as follows:

- $E(\|\|)=\emptyset$.
- $E\left(\left\|\Gamma_{1}, \ldots, \Gamma_{n}, \Gamma_{n+1}\right\|\right)=$

$$
E\left(\left\|\Gamma_{1}, \ldots, \Gamma_{n}\right\|\right) \cup\left\{\Gamma_{1}, \ldots, \Gamma_{n}, \neg \operatorname{Prop}\left(\Gamma_{n+1}\right)\right\} .
$$

- $E\left(\left\|\Gamma_{1}, \ldots, \Gamma_{n}, \Gamma_{n}^{\theta}\right\|\right)=$

$$
\begin{gathered}
E\left(\left\|\Gamma_{1}, \ldots, \Gamma_{n}\right\|\right) \cup \\
\left\{\left\{\Gamma_{1}, \ldots, \Gamma_{n}, \neg \Gamma_{n+1}\right\},\left\{\Gamma_{1}, \ldots, \Gamma_{n}, \neg \operatorname{Prop}\left(\Gamma_{n+1}\right)\right\}\right\} .
\end{gathered}
$$

Theorem: For a context $\Gamma=\left\|\Gamma_{1}, \ldots, \Gamma_{n}\right\|$, the expansion $E(\Gamma)$ strongly represents the property ' Γ is strongly valid.'

Relation \preceq

Definition: Write $A \preceq B$ if in every interpretation I,

$$
\left\{\begin{array}{l}
I(A)=\mathbf{f} \Rightarrow I(B)=\mathbf{f}, \\
I(A)=\mathbf{t} \Rightarrow I(B)=\mathbf{t} .
\end{array}\right.
$$

Define $A \equiv B$ if $A \preceq B$ and $B \preceq A$.
Lemma \preceq is a reflexive and transitive relation.
Theorem Let $S_{1}, \ldots, S_{n}, S \cup\{A\}$ be a set of sequents. Let A and B be formulas for which $A \preceq B$.

Let P be a property.
If $S_{1}, \ldots, S_{n}, S \cup\{A\}$ strongly represents P, then
$S_{1}, \ldots, S_{n}, S \cup\{B\}$ also strongly represents P.

Some More Reasoning Rules

$S_{1}, \ldots, S_{n}, S \cup\{A \otimes B\}$ strongly represents P iff
$S_{1}, \ldots, S_{n}, S \cup\{A, B\}$ strongly represents P.
If $S_{1}, \ldots, S_{n}, S \cup\{A \oplus B\}$ strongly represents P, then
$S_{1}, \ldots, S_{n}, S \cup\{A\}, S \cup\{B\}$ also strongly represents P.
If $S_{1}, \ldots, S_{n}, S \cup\{\Sigma x A(x)\}$ strongly represents P, then for every variable c that does not occur in S_{1}, \ldots, S_{n}, A, or S,
$S_{1}, \ldots, S_{n}, S \cup\{A(c)\}$ also strongly represents P.
Result is a sequent calculus can be used. (Basing a calculus on ordinary representation is much harder.)

Theorem

- Except for Prop, all Kleene and PCL-operators, including the quantifiers, are \preceq-monotone.
- For formulas F and G,

$$
\begin{array}{llll}
F \rightarrow G & \preceq \neg F \oplus G & \langle F\rangle G & \preceq \\
{[F] G} & \preceq \neg \neg, \\
F \vee G & \preceq & \wp \oplus G & F \leftrightarrow G \\
& & & F \wedge G \\
\preceq \otimes G, \\
& & & \\
& & (F \oplus \neg G) .
\end{array}
$$

- $\forall x Q(x) \prec \Pi x Q(x)$ and $\exists x Q(x) \prec \Sigma x Q(x)$.

Radicalization

A radicalization operator! is an operator for which for every formula A, we have $A!\in\{\mathbf{f}, \mathbf{t}\}$, and $A \preceq A!$.

Theorem
For every radicalization operator !,

$$
\begin{gathered}
A \otimes B \preceq A!\wedge B!, \\
A \oplus B \preceq A!\vee B!, \\
\Pi x Q(x) \preceq \forall x(Q(x)!), \\
\Sigma x Q(x) \preceq \exists x(Q(x)!) .
\end{gathered}
$$

(This is the same result that we had before, but now generalized to strong representation. It confirms the weakness of Kleene logic.)

Back to Relativization

The radicalizations of the Kleenings of the sequents $S_{1}, S_{1}, \ldots, S_{n}$ in $E(\|\Gamma\|)$ cover the original intuition:

When the formula has been typechecked, it can be replaced by its relativization.

Sequent S_{n} is nearly always classical.
The only way of making it non-classical is by explicitly reasoning about Prop, which is usually done only in assumptions.

Geometric Formulas

A geometric literal is an object of one of the following three forms:

1. A variable atom $p_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$, where x_{1}, \ldots, x_{n} are variables, and $\lambda \in\{\mathbf{f}, \mathbf{e}, \mathbf{t}\}$. Repeated variables are allowed.
2. An equality atom $x_{1} \approx x_{2}$.
3. An existentially quantified atom $\exists y p_{\lambda}\left(x_{1}, \ldots, x_{n}, y\right)$, where x_{1}, \ldots, x_{n} and y are variables, and $\lambda \in\{\mathbf{e}, \mathbf{t}\}$. There must be at least one occurrence of y in the atom $p_{\lambda}\left(x_{1}, \ldots, x_{n}, y\right)$. Repeated occurrences of variables (including y) are allowed, and y does not have to be on the last position.

A geometric formula is a formula of form $\forall \bar{x} A_{1} \vee \cdots \vee A_{p}$, where each A_{i} is a geometric literal with all its free variables among \bar{x}.

Interpretations

Definition: We assume an infinite set of elements (constants) \mathcal{E}. A ground atom is

1. an object of form $p_{\lambda}\left(e_{1}, \ldots, e_{n}\right)$, where $n \geq 0, \quad e_{1}, \ldots, e_{n} \in \mathcal{E}$ and $\lambda \in\{\mathbf{f}, \mathbf{e}, \mathbf{t}\}$.
2. an object of form $e_{1} \approx e_{2}$, with $e_{1}, e_{2} \in \mathcal{E}$.

Definition An interpretation is a pair (E, M) in which $E \subseteq \mathcal{E}$ is a set of elements, and M is a set of ground atoms over E, s.t. M contains no ground atoms of form $p_{\mathbf{f}}\left(e_{1}, \ldots, e_{n}\right)$, no ground atoms of form $e_{1} \approx e_{2}$, and no conflicting pairs of ground atoms $p_{\mathbf{e}}\left(e_{1}, \ldots, e_{n}\right), p_{\mathbf{t}}\left(e_{1}, \ldots, e_{n}\right)$.

Conflict, False

Let A be a geometric literal, let (E, M) be an interpretation. Let Θ be a ground substitution:
$A \Theta$ is in conflict with (E, M) if

- A has form $x \approx y$, and $x \Theta \neq y \Theta$.
- A has form $p_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$, and there is an atom of form $p_{\mu}\left(x_{1} \Theta, \ldots, x_{n} \Theta\right) \in E$, for which $\lambda \neq \mu$.
$A \Theta$ is true in (E, M) if
- A has form $x \approx y$, and $x \Theta=y \Theta$.
- A has form $p_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$ and $A \Theta \in M$.
- A has form $\exists y p_{\lambda}\left(x_{1}, \ldots, x_{n}, y\right)$, and there is a $e \in E$, s.t. $A \Theta\{y:=e\} \in M$.

For a geometric formula $F=\forall \bar{x} A_{1} \vee \cdots \vee A_{p}$,
$F \Theta$ is false in (E, M) if all A_{i} are false in (E, M).
Lemma If $A \Theta$ conflicts (E, M), then $A \Theta$ is false in (E, M).
If $A \Theta$ conflicts (E, M), and $E \subseteq E^{\prime}, M \subseteq M^{\prime}$, then $A \Theta$ also conflicts (E^{\prime}, M^{\prime}).

Search Algorithm

Find a geometric formula F and a substitution Θ, s.t. $F \Theta$ is false in (E, M). If no such F and Θ exist, then (E, M) is a model.
Write $F=\forall \bar{x} A_{1} \vee \cdots \vee A_{p}$.
If all $A_{i} \Theta$ are in conflict with (E, M), then give up.
Otherwise, let $B_{1}, \ldots, B_{q} \subseteq A_{1}, \ldots, A_{p}$ be the literals that are not in conflict with (E, M). (but they are still false)

Guess a B_{j}. If B_{j} has form $p_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$, then add $B_{j} \Theta$ to M, and (recursively) continue search.
Otherwise, B_{j} must have form $\exists y p_{\lambda}\left(x_{1}, \ldots, x_{n}, y\right)$.

- Either guess a value $e \in E$, add $p_{\lambda}\left(x_{1}, \ldots, x_{n}, y\right) \Theta\{y:=e\}$ to M, and (recursively) continue search,
- Or create an $\hat{e} \notin E$, add $p_{\lambda}\left(x_{1}, \ldots, x_{n}, y\right) \Theta\{y:=\hat{e}\}$ to M, add \hat{e} to E, and continue search.

Learning, Effectiveness of the Calculus

The search algorithm can be enhanced with learning in the same way as with classical logic. The learning rules are rather complicated. They are similar to resolution rules.

The calculus on classical logic was fairly effictive, and I hope that the calculus on Kleene logic will also be effective. Users of ATP ask for type systems.

The calculus can be adopted to certain applications. (e.g. type checking.)

Example of Geometric Formulas
$\operatorname{Prop}(A)$
$A \rightarrow \operatorname{Prop}(B)$
$A_{\mathrm{f}} \vee A_{\mathrm{t}}$
$A \rightarrow \operatorname{Prop}(C)$
$A_{\mathbf{f}} \vee B_{\mathrm{f}} \vee B_{\mathrm{t}}$
$[\operatorname{Prop}(A)] A$
$A_{\mathbf{f}} \vee C_{\mathbf{f}} \vee C_{\mathbf{t}}$
$[\operatorname{Prop}(A)] \neg \operatorname{Prop}(B)$
$A_{\mathrm{e}} \vee A_{\mathrm{t}}$
$A_{\mathrm{e}} \vee B_{\mathrm{e}}$

Another Refutation

We want to prove $a \approx b \rightarrow s(a) \approx s(b)$. This is done by refuting $a \approx b, s(a) \not \approx s(b)$.

We obtain the following geometric formulas:
(1) $\exists y A_{\mathbf{t}}(y)$
(2) $\exists y B_{\mathbf{t}}(y)$
(3) $\forall x \exists y S_{\mathbf{t}}(x, y)$
(4) $\forall \alpha \beta A_{\mathbf{f}}(\alpha) \vee B_{\mathbf{f}}(\beta) \vee \alpha \approx \beta$
(5) $\forall \alpha \beta \gamma A_{\mathbf{f}}(\alpha) \vee B_{\mathbf{f}}(\beta) \vee S_{\mathbf{f}}(\alpha, \gamma) \vee S_{\mathbf{f}}(\beta, \gamma)$

Transformation to Geometric Formulas

Tranformations is mostly straightforward, but one needs subformula replacement.

In classical logic, subformula replacement is defined as follows:
Let $F[A]$ be a formula, with subformula A. Assume that \bar{x} are the free variables of F. Replace $F[A(\bar{x})]$ by

$$
F[p(\bar{x})], \quad \forall \bar{x} p(\bar{x}) \leftrightarrow A(\bar{x}) .
$$

Subformula Replacement with \preceq
We say that A occurs positively in F, if A is not in the scope of a \neg or \leftrightarrow, not inside a left argument of a \rightarrow, and not in the scope of a Prop.

If A occurs positively in F, then

$$
F[A(\bar{x})] \preceq \Sigma p\left(\begin{array}{l}
F[p(\bar{x})] \otimes \\
\Pi \bar{x} \operatorname{Prop}(P(\bar{x})) \otimes \\
\Pi \bar{x} \neg p(\bar{x}) \oplus A(\bar{x})
\end{array}\right)
$$

If $I(F[A(\bar{x})])=\mathbf{t}$, then take $p:=\lambda \bar{x}\langle\operatorname{Prop}(A(\bar{x})\rangle A(\bar{x})$.
If $I(F[A(\bar{x})])=\mathbf{f}$, then assume that the second formula is not false for some predicate p. We have
$I^{\prime}(A(\bar{x}))=\mathbf{f} \Rightarrow I^{\prime}(p(\bar{x})) \neq \mathbf{t} \Rightarrow I^{\prime}(p(\bar{x}))=\mathbf{f}$.
By monotonicity, we obtain $F[A(\bar{x})]=\mathbf{f} \Rightarrow F[p(\bar{x})]=\mathbf{f}$.

Subformula Replacement

Positive subformula replacement is sufficient for transformation to geometric formulas.

1. Transform to Kleene logic and NNF, using \preceq.
2. Introduce predicates for functions of form $F:=\lambda \bar{x} y f(\bar{x}) \approx y$. Introduce axioms $\forall \bar{x} \exists y F(\bar{x}, y)$. Use definition of F to remove function symbols.
3. Remove negative equality by substitution.
4. Use positive subformula replacement to obtain geometric format.

Conclusions, Future Work

- I believe that the higher-order variant of PCL (PHOLI, which I totally didn't speak about) is 'the right logic' for applications.
- I have shown how to do theorem proving in PCL. The main difference with classical logic is in the clause transformation. Once we have geometric format, there is not much difference with classical logic.
- Resolution can be developed in a similar way.
- The theorem proving methods clarify the connections between PCL, Kleene logic and classical logic. It confirms that PCL is close to simple type theory.
- All of this needs to be implemented.

