
Theorem Proving in Logic with Partial Functions

Wroc law, 6 december 2013

Hans de Nivelle

University of Wroc law, Poland

1

Partial Functions

We are surrounded by partial functions:

∀x:Real (
√
x)2 = x,

∀L:List cons(first(L), rest(L)) = L,

∀m,n:Nat 0 ≤ (m mod n) ∧ (m mod n) < |n|.

2

Can be handled by relativization:

∀x:Real x ≥ 0 → (
√
x)2 = x,

∀L:List L 6= nil → cons(first(L), rest(L)) = L,

∀m,n:Nat n 6= 0 → 0 ≤ (m mod n) ∧ (m mod n) < |n|.

3

One can also relativize the types:

∀x Real(x) ∧ x ≥ 0 → (
√
x)2 = x,

∀x List(x) ∧ L 6= nil → cons(first(L), rest(L)) = L,

∀m,n Nat(m)∧Nat(n)∧n 6= 0 → 0 ≤ (m mod n)∧(m mod n) < |n|.

4

Is it really the same?

Yes, but only because the formulas are correct.

When formulas are not correct, their relativizations have meanings

that are either too weak or too strong.

Built-in (to the logic) typing ensures that a formula becomes

unusable when the typing rules are not respected. With

relativization, strictness is lost.

If you are certain that all formulas that you use are correct, then

you don’t need type checking,

or more precisely:

When a formula has been typechecked, its types can be replaced by

relativizations without changing the meaning.

5

Putting Preconditions in the Types?

For partial functions, one wants the same strictness as simple

types. Include preconditions in the types:

∀x:Real ≥ 0 (
√
x)2 = x,

∀L:List 6= nil cons(first(L), rest(L)) = L,

∀m:Nat n:Nat 6= 0 0 ≤ (m mod n) ∧ (m mod n) < |n|.

There is no general form of preconditions:

∀m:Nat m 6= 0 → ∃n:Nat ≤ m m− n = 1.

6

PCL

Introduce new truth value e for meaningless formulas. Split → into

→ and []. Split ∧ into 〈 〉 and ∧.

∀x [Real(x) ∧ x > 0](
√
x)2 = x,

∀x [List(L) ∧ L 6= nil] cons(first(L), rest(L)) = L,

∀m,n[Nat(m)∧Nat(n)][n 6= 0] 0 ≤ (m mod n)∧(m mod n) < |n|,

∀m[Nat(m)] m 6= 0 → ∃n〈 Nat(n) 〉 〈 m ≥ n 〉 m− n = 1.

7

PCL-operators

¬: Argument must be well-typed. For the rest, semantics is as

usual.

→,∧,∨,↔: Both arguments must be well-typed. For the rest,

semantics is as usual.

[A]B: First formula A must be well-typed. If A is true, then second

formula must be well-typed. If [A]B is well-typed, it means the

same as A → B.

〈A〉B: First formula A must be well-typed. If A is true, then

second formula must be well-typed. If 〈A〉B is well-typed, it means

the same as A ∧B.

∀x P (x): Every Ixd (P (x)) must be well-typed. For the rest,

semantics is as usual.

∃x P (x): Every Ixd (P (x)) must be well-typed. For the rest,

semantics is as usual.

8

Operators ∧,∨,→,↔,¬, ∀, ∃ are strict.

Operators [] and 〈 〉 are lazy.

Equality = is total, i.e. always well-typed. (One can define weaker

forms of equality.)

The Prop() operator is always well-typed. It is true if its argument

is well-typed.

9

Interpretations

Definition: An interpretation I = (D, f , t, e, []) is defined by:

• A domain D.

• Two distinct truth values f and t.

• An error value e.

• A function [] that interprets the function symbols: If f is a

function symbol with arity n, then [f] is a total function from

Dn to D.

• A function [] that interprets the predicate symbols: If p is a

predicate symbol with arity n, then [p] is a total function from

Dn to {f , e, t}.

10

Semantics of Binary Operators

〈 〉 :

f f f

e e e

f e t

∧ :

f e f

e e e

f e t

[] :

t t t

e e e

f e t

→:

t e t

e e e

f e t

∨ :

f e t

e e e

t e t

11

Unary Operators

¬ :

t

e

f

Prop :

t

f

t

Quantifiers

Quantifiers must be associated to the modified ∨ and ∧ :

For ∀x P (x) and ∃x P (x), construct S = {Ixd (P (x)) | d ∈ D}.
Then select most preferred value from S, using the preferences:

∀ : e > f > t, ∃ : e > t > f .

12

Contexts

PCL reasons with contexts:

∀x Prop(Nat(x)),

Nat(0),

∀x Nat(x) → Nat(succ(x)),

∀xy Nat(x) ∧ Nat(y) → Prop(x ≤ y),

∀xy [Nat(x), Nat(y), Nat(z)] x ≤ y ∧ y ≤ z → x ≤ z,

∀xy [Nat(x), Nat(y)] y ≤ x → Nat(x− y),

∀xy [Nat(x), Nat(y)] x ≤ y → ∃z 〈 Nat(z), x ≥ z 〉 x− z = y.

13

Definition: We call an object of form ‖Γ1, . . . ,Γm‖, in which all Γj

are formulas, and in which some Γj are possibly marked with a θ,

a context.

The formulas that are marked with θ are theorems, the others are

assumptions.

Example

‖Prop(A),Prop(B), A,B, (A ∧B)θ, . . . ‖
is a context.

A context is strongly valid if in every interpretation

I = (D, f , t, e, []), for which there is an i, s.t. I(Γi) 6= t, the first

such i satisfies the following condition:

• Γi is not marked as a theorem, and I(Γi) = f .

14

Examples

Not strongly valid:

‖A,Aθ‖

Strongly valid:

‖Prop(A), A,Aθ‖

Not strongly valid:

‖Prop(A), A, (A ∨B)θ‖

Strongly valid:

‖Prop(A),Prop(B), A, (A ∨B)θ‖

‖Prop(A), Prop(B), ¬B, ¬A ∨B, (¬A)θ‖

15

PCL has strictness for types and preconditions: Nothing can be

done with a formula that does not respect the types of the

preconditions.

It has truth-value based semantics.

There is no restriction on the form of types or preconditions.

16

Theorem Proving in PCL

Intuition: Check type correctness of the formulas. After that,

replace by relativizations, and use a standard approach for classical

logic.

⇒ Almost possible, but one needs Kleene logic.

Kleene logic can be used for type checking and for proving.

17

Kleene Logic

The semantics of ¬ and Prop is defined by the following truth

tables:

¬ :

t

e

f

Prop :

t

f

t

The semantics of the operators ⊕, ⊗ is defined by the following

truth tables:

⊕ :

f e t

e e t

t t t

⊗ :

f f f

f e e

f e t

→ and ↔ can be defined in the usual way.

18

Kleene Logic (2)

The semantics of the quantifiers is defined by the following

preferences:

Π : f > e > t, Σ : t > e > f .

In order to evaluate a quantified formula Qx F (x) in interpretation

I, form the set S = {Ixd (F (x))}. (The set of possible truth values

that F (x) can have in I, by picking a value for x.)

After that, select the most preferred value for the quantifier in the

list above from S.

Π is connected to ⊗, while Σ is connected to ⊕.

19

Expressivity of Kleene Logic

Kleene logic may seem different from classical logic, but the

differences are minimal:

One can ask questions of the following form:

Is P satisfiable? (Is there a 3-valued interpretation I, in which

I(P) = t?)

Do P1, . . . , Pn imply Q? (Is, in every 3-valued interpretation where

I(P1) = · · · = I(Pn) = t, also I(Q) = t?)

Let T (P) denote I(P) = t, let F (P) denote I(P) = f .

T () and F () can be viewed as logical operators, whose result is in

{f , t}.

20

Equivalences involving T () and F () :

T (P ⊗Q) T (P) ∧ T (Q)

F (P ⊗Q) F (P) ∨ F (Q)

T (P ⊕Q) T (P) ∨ T (Q)

F (P ⊕Q) F (P) ∧ F (Q)

T (¬P) F (P)

F (¬P) T (P)

T (Πx P (x)) ∀x T (P (x))

F (Πx P (x)) ∃x F (P (x))

T (Σx P (x)) ∃x T (P (x))

F (Σx P (x)) ∀x F (P (x))

Prop(A) T (A) ∨ F (A)

21

We see that Kleene logic is only slightly more expressive than

classical logic.

The only only point where one can find any difference at all is in

the atoms.

For atoms p(t1, . . . , tn), define

pf (t1, . . . , tn) := F (p(t1, . . . , tn)),

pt(t1, . . . , tn) := T (p(t1, . . . , tn)),

pe(t1, . . . , tn) := ¬Prop(p(t1, . . . , tn)),

and Kleene logic is (almost) gone.

⇒ theorem proving in Kleene logic is easy!

Use superposition, tableaux, or geometric logic.

22

Sequents, Strong Representation

Definition: A sequent is a set of formulas {F1, . . . , Fn}. For an

interpretation I, we define I({F1, . . . , Fn}) =
⊗

1≤i≤n I(Fi).

Let S1, . . . , Sn be a set of sequents. We define

I(S1, . . . , Sn) =
⊕

1≤i≤n I(Si).

We say that a set of sequents S1, . . . , Sn represents a property P if

P ⇔ I(S1, . . . , Sn) 6= t.

We say that a set of sequents S1, . . . , Sn strongly represents a

property P if






P ⇒ I(S1, . . . , Sn) = f ,

¬P ⇒ I(S1, . . . , Sn) = t.

It is important to see the redundancy in strong representation!

23

From PCL to Kleene Logic

Definition: Let ‖Γ1, . . . ,Γn‖ be a context. Recursively define

E(‖Γ1, . . . ,Γn‖), the expansion of ‖Γ1, . . . ,Γn‖, as follows:

• E(‖ ‖) = ∅.

• E(‖Γ1, . . . ,Γn,Γn+1‖) =

E(‖Γ1, . . . ,Γn‖) ∪ {Γ1, . . . ,Γn,¬Prop(Γn+1)}.

• E(‖Γ1, . . . ,Γn,Γ
θ
n‖) =

E(‖Γ1, . . . ,Γn‖) ∪

{ {Γ1, . . . ,Γn,¬Γn+1}, {Γ1, . . . ,Γn,¬Prop(Γn+1)} }.

Theorem: For a context Γ = ‖Γ1, . . . ,Γn‖, the expansion E(Γ)

strongly represents the property ‘Γ is strongly valid.’

24

Relation �
Definition: Write A � B if in every interpretation I,







I(A) = f ⇒ I(B) = f ,

I(A) = t ⇒ I(B) = t.

Define A ≡ B if A � B and B � A.

Lemma � is a reflexive and transitive relation.

Theorem Let S1, . . . , Sn, S ∪ {A} be a set of sequents. Let A and

B be formulas for which A � B.

Let P be a property.

If S1, . . . , Sn, S ∪ {A} strongly represents P, then

S1, . . . , Sn, S ∪ {B} also strongly represents P.

25

Some More Reasoning Rules

S1, . . . , Sn, S ∪ {A⊗B} strongly represents P iff

S1, . . . , Sn, S ∪ {A,B} strongly represents P.

If S1, . . . , Sn, S ∪ {A⊕B} strongly represents P, then

S1, . . . , Sn, S ∪ {A}, S ∪ {B} also strongly represents P.

If S1, . . . , Sn, S ∪ {Σx A(x)} strongly represents P, then for every

variable c that does not occur in S1, . . . , Sn, A, or S,

S1, . . . , Sn, S ∪ {A(c)} also strongly represents P.

Result is a sequent calculus can be used. (Basing a calculus on

ordinary representation is much harder.)

26

Theorem

• Except for Prop, all Kleene and PCL-operators, including the

quantifiers, are �-monotone.

• For formulas F and G,

F → G � ¬F ⊕G 〈F 〉G � F ⊗G,

[F]G � ¬F ⊕G F ∧G � F ⊗G,

F ∨G � F ⊕G F ↔ G � (¬F ⊕G) ⊗
(F ⊕ ¬G).

• ∀x Q(x) ≺ Πx Q(x) and ∃x Q(x) ≺ Σx Q(x).

27

Radicalization

A radicalization operator ! is an operator for which for every

formula A, we have A! ∈ {f , t}, and A � A!.

Theorem

For every radicalization operator !,

A⊗B � A! ∧B!,

A⊕B � A! ∨B!,

Πx Q(x) � ∀x (Q(x)!),

Σx Q(x) � ∃x (Q(x)!).

(This is the same result that we had before, but now generalized to

strong representation. It confirms the weakness of Kleene logic.)

28

Back to Relativization

The radicalizations of the Kleenings of the sequents S1, S1, . . . , Sn

in E(‖Γ‖) cover the original intuition:

When the formula has been typechecked, it can be replaced by its

relativization.

Sequent Sn is nearly always classical.

The only way of making it non-classical is by explicitly reasoning

about Prop, which is usually done only in assumptions.

29

Geometric Formulas

A geometric literal is an object of one of the following three forms:

1. A variable atom pλ(x1, . . . , xn), where x1, . . . , xn are variables,

and λ ∈ {f , e, t}. Repeated variables are allowed.

2. An equality atom x1 ≈ x2.

3. An existentially quantified atom ∃y pλ(x1, . . . , xn, y), where

x1, . . . , xn and y are variables, and λ ∈ {e, t}. There must be at

least one occurrence of y in the atom pλ(x1, . . . , xn, y).

Repeated occurrences of variables (including y) are allowed,

and y does not have to be on the last position.

A geometric formula is a formula of form ∀x A1 ∨ · · · ∨Ap, where

each Ai is a geometric literal with all its free variables among x.

30

Interpretations

Definition: We assume an infinite set of elements (constants) E . A

ground atom is

1. an object of form pλ(e1, . . . , en), where n ≥ 0, e1, . . . , en ∈ E
and λ ∈ {f , e, t}.

2. an object of form e1 ≈ e2, with e1, e2 ∈ E .

Definition An interpretation is a pair (E,M) in which E ⊆ E is a

set of elements, and M is a set of ground atoms over E, s.t. M

contains no ground atoms of form pf (e1, . . . , en), no ground atoms

of form e1 ≈ e2, and no conflicting pairs of ground atoms

pe(e1, . . . , en), pt(e1, . . . , en).

31

Conflict, False

Let A be a geometric literal, let (E,M) be an interpretation. Let Θ

be a ground substitution:

AΘ is in conflict with (E,M) if

• A has form x ≈ y, and xΘ 6= yΘ.

• A has form pλ(x1, . . . , xn), and there is an atom of form

pµ(x1Θ, . . . , xnΘ) ∈ E, for which λ 6= µ.

AΘ is true in (E,M) if

• A has form x ≈ y, and xΘ = yΘ.

• A has form pλ(x1, . . . , xn) and AΘ ∈ M.

• A has form ∃y pλ(x1, . . . , xn, y), and there is a e ∈ E, s.t.

AΘ{y := e} ∈ M.

32

For a geometric formula F = ∀x A1 ∨ · · · ∨Ap,

FΘ is false in (E,M) if all Ai are false in (E,M).

Lemma If AΘ conflicts (E,M), then AΘ is false in (E,M).

If AΘ conflicts (E,M), and E ⊆ E′, M ⊆ M ′, then AΘ also

conflicts (E′,M ′).

33

Search Algorithm

Find a geometric formula F and a substitution Θ, s.t. FΘ is false

in (E,M). If no such F and Θ exist, then (E,M) is a model.

Write F = ∀x A1 ∨ · · · ∨Ap.

If all AiΘ are in conflict with (E,M), then give up.

Otherwise, let B1, . . . , Bq ⊆ A1, . . . , Ap be the literals that are not

in conflict with (E,M). (but they are still false)

Guess a Bj . If Bj has form pλ(x1, . . . , xn), then add BjΘ to M,

and (recursively) continue search.

Otherwise, Bj must have form ∃y pλ(x1, . . . , xn, y).

• Either guess a value e ∈ E, add pλ(x1, . . . , xn, y)Θ{y := e} to

M, and (recursively) continue search,

• Or create an ê 6∈ E, add pλ(x1, . . . , xn, y)Θ{y := ê} to M, add

ê to E, and continue search.

34

Learning, Effectiveness of the Calculus

The search algorithm can be enhanced with learning in the same

way as with classical logic. The learning rules are rather

complicated. They are similar to resolution rules.

The calculus on classical logic was fairly effictive, and I hope that

the calculus on Kleene logic will also be effective. Users of ATP ask

for type systems.

The calculus can be adopted to certain applications. (e.g. type

checking.)

35

Example of Geometric Formulas

Prop(A) Af ∨At

A → Prop(B) Af ∨Bf ∨Bt

A → Prop(C) Af ∨ Cf ∨ Ct

[Prop(A)] A Ae ∨At

[Prop(A)] ¬Prop(B) Ae ∨Be

36

Another Refutation

We want to prove a ≈ b → s(a) ≈ s(b). This is done by refuting

a ≈ b, s(a) 6≈ s(b).

We obtain the following geometric formulas:

(1) ∃y At(y)

(2) ∃y Bt(y)

(3) ∀x ∃y St(x, y)

(4) ∀αβ Af (α) ∨Bf (β) ∨ α ≈ β

(5) ∀αβγ Af (α) ∨Bf (β) ∨ Sf (α, γ) ∨ Sf (β, γ)

37

Transformation to Geometric Formulas

Tranformations is mostly straightforward, but one needs

subformula replacement.

In classical logic, subformula replacement is defined as follows:

Let F [A] be a formula, with subformula A. Assume that x are the

free variables of F. Replace F [A(x)] by

F [p(x)], ∀x p(x) ↔ A(x).

38

Subformula Replacement with �
We say that A occurs positively in F, if A is not in the scope of a ¬
or ↔, not inside a left argument of a →, and not in the scope of a

Prop.

If A occurs positively in F, then

F [A(x)] � Σp









F [p(x)] ⊗
Πx Prop(P (x)) ⊗
Πx ¬p(x) ⊕A(x)









If I(F [A(x)]) = t, then take p := λx 〈 Prop(A(x) 〉A(x).

If I(F [A(x)]) = f , then assume that the second formula is not

false for some predicate p. We have

I ′(A(x)) = f ⇒ I ′(p(x)) 6= t ⇒ I ′(p(x)) = f .

By monotonicity, we obtain F [A(x)] = f ⇒ F [p(x)] = f .

39

Subformula Replacement

Positive subformula replacement is sufficient for transformation to

geometric formulas.

1. Transform to Kleene logic and NNF, using � .

2. Introduce predicates for functions of form F := λxy f(x) ≈ y.

Introduce axioms ∀x∃y F (x, y). Use definition of F to remove

function symbols.

3. Remove negative equality by substitution.

4. Use positive subformula replacement to obtain geometric

format.

40

Conclusions, Future Work

• I believe that the higher-order variant of PCL (PHOLI, which I

totally didn’t speak about) is ’the right logic’ for applications.

• I have shown how to do theorem proving in PCL. The main

difference with classical logic is in the clause transformation.

Once we have geometric format, there is not much difference

with classical logic.

• Resolution can be developed in a similar way.

• The theorem proving methods clarify the connections between

PCL, Kleene logic and classical logic. It confirms that PCL is

close to simple type theory.

• All of this needs to be implemented.

41

