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Introduction
We present a new calculus for first-order logic with equality.

We call the calculus geometric resolution, because it operates on a

normal form, which is derived from geometric formulas. (this is a

first-order fragment introduced by Thoralf Skolem)

We show that the calculus is sound and complete for first-order

logic.




Motivation

Try out something new.

Avoid use of Herbrand’s theorem, because unrestricted
interpretations can be much more compact than Herbrand

interpretations.

Find general theorem proving strategies with good termination

behaviour.

Find theorem proving strategies that can deal better with

partial functions, incompletely defined functions.




Definition: We assume an infinite set of variables V.

A variable atom is an atom of one of the following two forms:

1. p(vi,...,v,) withn >0 and vy,...,v, € V.

2. U1 % (%)) with V1,V € V.
Observe that:
e There are no positive equalities.

e There are no constants and no function symbols.




Definition: A geometric formula has form

VZ AL(T) N NA(Z) ANz Z Y N ANy & x, — Z(T),

in which xy,2%,..., 24,2, €T C V.

Z (%) can have one of the following three forms:
1. The false constant L.
2. A disjunction of atoms B1(Z) V ---V B,.(T), with r > 0.
3. An existential formula of form 3y B(T,y).

Types 1 and 2 overlap (if one would allow r = 0) but we prefer to
distinguish the types. Geometric formulas of Type 1 are called
lemmas. Formulas of Type 2 are called disjunctive. Formulas of
Type 3 are called existential.




Example 1

We are interested in finding out whether a ~ b,

We try to find a model for

Resulting geometric formulas are:

AX)ANBY))ANX Y — L,
B(X)NCY)ANX £Y — 1,
AX)NC(X) — L,

— dz A(x),
— dz B(x),
— Jx C(x).




Example 2

What about s(a) =~ at s(s(a)) ~a?
Try to find model for




Example 3

a=s(a), pla,a)Vp(s(a),s(a))t pla,a).
Negation of goal:

a ~ S(CL), p(CL, CL) \/p(S(CL), S(CL)), _'p(av CL).

AX)AS(X,Y)AX #Y — L,




After these examples, you might be willing to believe that:

Theorem:

Every set of first-order formulas can be translated into a set of
geometric formulas, which is equisatisfiable.

The result (and the computation) can be linear in the size of the

input.




e For each function symbol or constant f, introduce a new
predicate symbol Py, s.t. #Pr = #f + 1.

e for each new predicate symbol Py, introduce a seriality axiom:

Vz dy Pf(f, Y).

e As long as F' contains a functional term, let f(x1,...,x,) be a

functional term with variable arguments.

Write F' = F| A| f(x1,...,2,) ] |, where A is the smallest

subformula that contains all occurrences of f(x1,...,x,).
Replace

Fl Al f(x1,...,25) ] ]
by




Searching for a Model

Definition: An interpretation is a finite set of atoms, with

arguments from a fixed, given set £.

Equality is interpreted as object equality, therefore there are no

disequality atoms in interpretations.

Examples of interpretations are

11



A Naive Algorithm for Theorem Proving

Definition: Let I be an interpretation. We call geometric formula

VZ AL(Z)N - NAT)ANwyr Zxy N Nag # x, — Z(T)

applicable in [ if there is a ground substitution O, s.t.
o All A;(7)O are in I.
e For each z; % 7, ;0 and x’;© are distinct.

In addition Z(Z)© has to be false in I.




. If Z(%) has form 1, then Z(7)0O is always false in [I.

. If Z(Z) has form B1(Z) V- --V B,.(T) then Z(Z)0O is false in I, if
none of B;(7)0O is present in I.

. If Z(%) has form Jy B(Z,y) then Z(Z)O is false in [ if there is
no element e € £, s.t. (B(Z,y)O) {y := e} is present in I.




Start with empty interpretation I = { }.
e If there is no applicable rule, then [ is a model.

e Otherwise, select a rule Vz ®(z) — Z(7) that is applicable on [
with substitution ©.
— If Z(%) has form 1, then backtrack.

— If Z(7) has form B1(Z) V ---V B,.(T), then backtrack
through all of
Iu{B;(7)6}.

— If Z(Z) has form 3y B(7,y), then backtrack through
Iu{ B(z,y) © {z:=e} },

for each e that is present in /. In addition, try

IUu{ B(z,y) © -{z:=¢} }

for a new element e’ that is not present in 1.




Remember the example
AX)ANBY)ANX2AY -1, B(X)ANCY)ANX =Y — 1,
AX)NC(X) — L,

— dr A(z), — dz B(z), — dz C(x).

empty interpretation),

(backtracking complete)




An example with disjunction:

— dr A(x),
AX)—- BX)v(C(X), AX)AB(X)— 1, C(X)— L.

(empty interpretation),
Aleo),

A(eo), B(eo),

A(eg), C(eg).

(backtracking complete)




Evaluation of Model Search

e A clever implementation of naive model search performs better
than I expected.

e Much depends on the selection strategy. (i.e. which applicable

rule is expanded first)

e But, of course, this algorithm will never be seriously

competitive.

How to improve?

= Avoid work being redone, add learning.




Model Search with Learning

The search algorithm backtracks using an interpretation . It

maintains a set of geometric formulas G.

Consider a recursive implementation search(/,G). The improved

version has the following invariant:

At every time when it returns (including returns from recursive

calls) :

Either I has been extended to a complete model (no rules in G are
applicable),
or there is a rule of form VZ ®(Z) — L in G, that is applicable in I.




The improved algorithm search(7,G) has the following structure:

e Either I is a model, or we can find a rule VT ®(T) — Z(T) that
is applicable with substitution ©.

e The algorithm successively tries interpretations

TU{AY,... . TU{A}.

e If none of them resulted in a model, we have for each 1 U{A4;}

an applicable rule of form vy, ®;(y,;) — L.

e What we need is a calculus that allows to make an inference
from VZ ®(T) — Z(T) and

\v/gl (I)l(g1> — J_, st 7\V/gr (I)T(gr> — L.

The result must have form VZ ¥(Z) — L and be applicable in I.




Rules for Lemma Learning

A complete calculus can be obtained by the following three rules:
e Instantiation (followed by merging)
e Disjunction resolution.

e Existential resolution.




Lemma Factoring:

Let A =
VT AL (ZT) NA(T) N - NAR(T) Ny Eay AN ANag#ax, — L,

be a lemma. Let ¥ be a substitution of form {y := y’}. Then the

following lemma is a factor of A:

VZY A(TX)NA- - ANALTE)N s X # )X A A gl gl — L




Disjunction Resolution:

Let p =
VZ ®(Z) — B1(Z) V-V By ()

be a disjunctive formula.

Let A =

VG D1(G)A- AD (G Ayp 2 Yy A ANys Zyl — L,

be a lemma, s.t. B1(Z) and D1 (y) are unifiable. Then the following

formula is a disjunction resolvent of p and A:
V X yX @(7)XA

Dy(@EN--AD(HE AN EZE YIS A A YD #yE —
Bo(T)ZV -+ -V By (T)2.




Existential Resolution:

Let p =
vz ®(7) — Jy B(7T,y)

be an existential formula.

Let A =

VZv VEZ)ABEZv)AvZzg AN ANvgzs — L,

be a lemma, s.t. B(Z,y) and B(Z,v) are unifiable and v ¢ Z. Then

the following formula is an existential resolvent of p and A:

VI zX ®(@XEAV(Z2)E — B(Z,21)X V-V B(Z, z5) 2.




Providing some Evidence

Suppose we have I = p(eg), q(ep).

Assume that the applicable rule is:
p(X) = r(X) Vv s(X).
Assume that p(eg), q(eg), 7r(eg) has applicable rule
r(X)— L.
Assume that p(eg), q(eg), s(eg) has applicable rule

q(X)ANs(X)— L.

By disjunction resolution, one can obtain:

p(X)Ag(X) — L.



Existential Resolution
The simplest form of existential resolution is:

From

and

o X,Y,Z) Ar(X,Y) — L

derive
p(X,)Y)Ar(X,Y) — L.




Existential Resolution (2)

Now suppose we have

q X, Y. 2)NZ %X Ar(X,)Y)— L.

The second rule refutes almost all possible choices for Z, except the

case where Z ~ X.

Therefore, we must keep this possibility in the conclusion:

p(X,Y)ATr(X,Y) — q(X,Y, X).




Existential Resolution (3)

Similarly,

and
q XY I)ONZEEXNZEZY Ar(X,Y)— L

result in

p(X,Y)Ar(X,Y) — q(X,Y,X)Vq(X,Y,Y).




Providing Evidence for Existential Resolution

Suppose that we have I = p(eg).
Assume that the applicable rule is — 3y q(y).
Assume that p(eg), ¢(eg) has applicable rule

p(X) AN g(X) — L.
Assume that p(eg), ¢(e1) has applicable rule

p(X)ANqgY)ANX 2£Y — 1.
Existential resolution gives
p(X) — q(X).
Disjunction resolution results in

p(X)— L.




Theorem: What I did in the examples, can always be done.




We have an implementation of this calculus, which is called geo. it
took part in this year’s CASC. It solved:

FOF': 73 out of 150,
CNEF': 45 out of 150,
SAT: 51 out of 100,
UEQ: 2 out of 100.

This is not bad for a first time, but there is still some work to do.




Conclusions, Future Work

We gave a new calculus, which is somewhat similar to
resolution, and which is refutationally complete for first-order

logic.

Since the algorithm provides an implicit completeness proof,
this calculus could be used for saturation-based theorem

proving.

But we do not recommand this: The calculus is intended to be

used in combination with the model search algorithm.

In the implementation, understand which lemmas should be
forgotten. Find good heuristics. Develope an intuition of how

it searches, and what the proofs mean.

Extend calculus? (theories, well-behaved infinite models)




