
Geometric Resolution:
A Proof Procedure Based on Finite
Model Search
Hans de Nivelle and Jia Meng

Max Planck Institut für Informatik, Saarbrücken, Germany,

National ICT, Canberra, Australia,

Seattle, 19.08.2006

1

Introduction

We present a new calculus for first-order logic with equality.

We call the calculus geometric resolution, because it operates on a

normal form, which is derived from geometric formulas. (this is a

first-order fragment introduced by Thoralf Skolem)

We show that the calculus is sound and complete for first-order

logic.

2

Motivation

• Try out something new.

• Avoid use of Herbrand’s theorem, because unrestricted

interpretations can be much more compact than Herbrand

interpretations.

• Find general theorem proving strategies with good termination

behaviour.

• Find theorem proving strategies that can deal better with

partial functions, incompletely defined functions.

3

Definition: We assume an infinite set of variables V .

A variable atom is an atom of one of the following two forms:

1. p(v1, . . . , vn) with n ≥ 0 and v1, . . . , vn ∈ V .

2. v1 6≈ v2 with v1, v2 ∈ V .

Observe that:

• There are no positive equalities.

• There are no constants and no function symbols.

4

Definition: A geometric formula has form

∀x A1(x) ∧ · · · ∧ Ap(x) ∧ x1 6≈ x′

1
∧ · · · ∧ xq 6≈ x′

q → Z(x),

in which x1, x
′

1
, . . . , xq, x

′

q ∈ x ⊆ V .

Z(x) can have one of the following three forms:

1. The false constant ⊥.

2. A disjunction of atoms B1(x) ∨ · · · ∨ Br(x), with r > 0.

3. An existential formula of form ∃y B(x, y).

Types 1 and 2 overlap (if one would allow r = 0) but we prefer to

distinguish the types. Geometric formulas of Type 1 are called

lemmas. Formulas of Type 2 are called disjunctive. Formulas of

Type 3 are called existential.

5

Example 1

We are interested in finding out whether a ≈ b, b ≈ c ` a ≈ c.

We try to find a model for

a ≈ b, b ≈ c, a 6≈ c.

Resulting geometric formulas are:

A(X) ∧ B(Y) ∧ X 6≈ Y → ⊥,

B(X) ∧ C(Y) ∧ X 6≈ Y → ⊥,

A(X) ∧ C(X) → ⊥,

→ ∃x A(x),

→ ∃x B(x),

→ ∃x C(x).

6

Example 2

What about s(a) ≈ a ` s(s(a)) ≈ a ?

Try to find model for

s(a) ≈ a, s(s(a)) 6≈ a.

A(X) ∧ S(X, Y) ∧ A(Y) ∧ X 6≈ Y → ⊥,

A(X) ∧ S(X, Y) ∧ S(Y, X) → ⊥,

∃x A(x),

∀x∃y S(x, y).

7

Example 3

a ≈ s(a), p(a, a) ∨ p(s(a), s(a)) ` p(a, a).

Negation of goal:

a ≈ s(a), p(a, a) ∨ p(s(a), s(a)), ¬p(a, a).

A(X) ∧ S(X, Y) ∧ X 6≈ Y → ⊥,

A(X) ∧ S(X, Y) → p(X, X) ∨ p(Y, Y),

A(X) ∧ p(X, X) → ⊥,

∃x A(x),

∀x∃y S(x, y).

8

After these examples, you might be willing to believe that:

Theorem:

Every set of first-order formulas can be translated into a set of

geometric formulas, which is equisatisfiable.

The result (and the computation) can be linear in the size of the

input.

9

• For each function symbol or constant f, introduce a new

predicate symbol Pf , s.t. #Pf = #f + 1.

• for each new predicate symbol Pf , introduce a seriality axiom:

∀x ∃y Pf (x, y).

• As long as F contains a functional term, let f(x1, . . . , xn) be a

functional term with variable arguments.

Write F = F [A[f(x1, . . . , xn)]], where A is the smallest

subformula that contains all occurrences of f(x1, . . . , xn).

Replace

F [A[f(x1, . . . , xn)]]

by

F [∀y (Pf (x1, . . . , xn, y) → A[y])].

10

Searching for a Model

Definition: An interpretation is a finite set of atoms, with

arguments from a fixed, given set E .

Equality is interpreted as object equality, therefore there are no

disequality atoms in interpretations.

Examples of interpretations are

A(e0), S(e0, e1), S(e1, e2), B(e2).

A(e0), B(e1), P (e0, e1, e2), Q(e2, e2, e1).

11

A Naive Algorithm for Theorem Proving

Definition: Let I be an interpretation. We call geometric formula

∀x A1(x) ∧ · · · ∧ Ap(x) ∧ x1 6≈ x′

1
∧ · · · ∧ xq 6≈ x′

q → Z(x)

applicable in I if there is a ground substitution Θ, s.t.

• All Ai(x)Θ are in I.

• For each xj 6≈ x′

j , xjΘ and x′

jΘ are distinct.

In addition Z(x)Θ has to be false in I.

12

1. If Z(x) has form ⊥, then Z(x)Θ is always false in I.

2. If Z(x) has form B1(x)∨ · · · ∨Br(x) then Z(x)Θ is false in I, if

none of Bj(x)Θ is present in I.

3. If Z(x) has form ∃y B(x, y) then Z(x)Θ is false in I if there is

no element e ∈ E , s.t. (B(x, y)Θ) {y := e} is present in I.

13

Start with empty interpretation I = { }.

• If there is no applicable rule, then I is a model.

• Otherwise, select a rule ∀x Φ(x) → Z(x) that is applicable on I

with substitution Θ.

– If Z(x) has form ⊥, then backtrack.

– If Z(x) has form B1(x) ∨ · · · ∨ Br(x), then backtrack

through all of

I ∪ {Bj(x)Θ}.

– If Z(x) has form ∃y B(x, y), then backtrack through

I ∪ { B(x, y) Θ · {x := e} },

for each e that is present in I. In addition, try

I ∪ { B(x, y) Θ · {x := e′} }

for a new element e′ that is not present in I.

14

Remember the example

A(X) ∧ B(Y) ∧ X 6≈ Y → ⊥, B(X) ∧ C(Y) ∧ X 6≈ Y → ⊥,

A(X) ∧ C(X) → ⊥,

→ ∃x A(x), → ∃x B(x), → ∃x C(x).

(empty interpretation),

A(e0),

A(e0), B(e0),

A(e0), B(e0), C(e0),

A(e0), B(e0), C(e1),

A(e0), B(e1).

(backtracking complete)

15

An example with disjunction:

→ ∃x A(x),

A(X) → B(X) ∨ C(X), A(X) ∧ B(X) → ⊥, C(X) → ⊥.

(empty interpretation),

A(e0),

A(e0), B(e0),

A(e0), C(e0).

(backtracking complete)

16

Evaluation of Model Search

• A clever implementation of naive model search performs better

than I expected.

• Much depends on the selection strategy. (i.e. which applicable

rule is expanded first)

• But, of course, this algorithm will never be seriously

competitive.

How to improve?

⇒ Avoid work being redone, add learning.

17

Model Search with Learning

The search algorithm backtracks using an interpretation I. It

maintains a set of geometric formulas G.

Consider a recursive implementation search(I,G). The improved

version has the following invariant:

At every time when it returns (including returns from recursive

calls) :

Either I has been extended to a complete model (no rules in G are

applicable),

or there is a rule of form ∀x Φ(x) → ⊥ in G, that is applicable in I.

18

The improved algorithm search(I,G) has the following structure:

• Either I is a model, or we can find a rule ∀x Φ(x) → Z(x) that

is applicable with substitution Θ.

• The algorithm successively tries interpretations

I ∪ {A1}, . . . , I ∪ {Ar}.

• If none of them resulted in a model, we have for each I ∪ {Aj}

an applicable rule of form ∀yj Φj(yj) → ⊥.

• What we need is a calculus that allows to make an inference

from ∀x Φ(x) → Z(x) and

∀y
1

Φ1(y1
) → ⊥, . . . , ∀yr Φr(yr) → ⊥.

The result must have form ∀z Ψ(z) → ⊥ and be applicable in I.

19

Rules for Lemma Learning

A complete calculus can be obtained by the following three rules:

• Instantiation (followed by merging)

• Disjunction resolution.

• Existential resolution.

20

Lemma Factoring:

Let λ =

∀x A1(x) ∧ A2(x) ∧ · · · ∧ Ap(x) ∧ x1 6≈ x′

1
∧ · · · ∧ xq 6≈ x′

q → ⊥,

be a lemma. Let Σ be a substitution of form {y := y′}. Then the

following lemma is a factor of λ:

∀xΣ A1(xΣ)∧ · · · ∧Ap(xΣ)∧ x1Σ 6≈ x′

1
Σ ∧ · · ·∧ xqΣ 6≈ x′

qΣ → ⊥.

21

Disjunction Resolution:

Let ρ =

∀x Φ(x) → B1(x) ∨ · · · ∨ Bq(x)

be a disjunctive formula.

Let λ =

∀y D1(y) ∧ · · · ∧ Dr(y) ∧ y1 6≈ y′

1
∧ · · · ∧ ys 6≈ y′

s → ⊥,

be a lemma, s.t. B1(x) and D1(y) are unifiable. Then the following

formula is a disjunction resolvent of ρ and λ:

∀ xΣ yΣ Φ(x)Σ∧

D2(y)Σ ∧ · · · ∧ Dr(y)Σ ∧ y1Σ 6≈ y′

1
Σ ∧ · · · ∧ ysΣ 6≈ y′

sΣ →

B2(x)Σ ∨ · · · ∨ Bq(x)Σ.

22

Existential Resolution:

Let ρ =

∀x Φ(x) → ∃y B(x, y)

be an existential formula.

Let λ =

∀z v Ψ(z) ∧ B(z, v) ∧ v 6≈ z1 ∧ · · · ∧ v 6≈ zs → ⊥,

be a lemma, s.t. B(x, y) and B(z, v) are unifiable and v 6∈ z. Then

the following formula is an existential resolvent of ρ and λ:

∀ xΣ zΣ Φ(x)Σ ∧ Ψ(z)Σ → B(z, z1)Σ ∨ · · · ∨ B(z, zs)Σ.

23

Providing some Evidence

Suppose we have I = p(e0), q(e0).

Assume that the applicable rule is:

p(X) → r(X) ∨ s(X).

Assume that p(e0), q(e0), r(e0) has applicable rule

r(X) → ⊥.

Assume that p(e0), q(e0), s(e0) has applicable rule

q(X) ∧ s(X) → ⊥.

By disjunction resolution, one can obtain:

p(X) ∧ q(X) → ⊥.

24

Existential Resolution

The simplest form of existential resolution is:

From

p(X, Y) → ∃z q(X, Y, z)

and

q(X, Y, Z) ∧ r(X, Y) → ⊥

derive

p(X, Y) ∧ r(X, Y) → ⊥.

25

Existential Resolution (2)

Now suppose we have

p(X, Y) → ∃z q(X, Y, z)

and

q(X, Y, Z) ∧ Z 6≈ X ∧ r(X, Y) → ⊥.

The second rule refutes almost all possible choices for Z, except the

case where Z ≈ X.

Therefore, we must keep this possibility in the conclusion:

p(X, Y) ∧ r(X, Y) → q(X, Y, X).

26

Existential Resolution (3)

Similarly,

p(X, Y) → ∃z q(X, Y, z)

and

q(X, Y, Z) ∧ Z 6≈ X ∧ Z 6≈ Y ∧ r(X, Y) → ⊥

result in

p(X, Y) ∧ r(X, Y) → q(X, Y, X) ∨ q(X, Y, Y).

27

Providing Evidence for Existential Resolution

Suppose that we have I = p(e0).

Assume that the applicable rule is → ∃y q(y).

Assume that p(e0), q(e0) has applicable rule

p(X) ∧ q(X) → ⊥.

Assume that p(e0), q(e1) has applicable rule

p(X) ∧ q(Y) ∧ X 6≈ Y → ⊥.

Existential resolution gives

p(X) → q(X).

Disjunction resolution results in

p(X) → ⊥.

28

Theorem: What I did in the examples, can always be done.

29

We have an implementation of this calculus, which is called geo. it

took part in this year’s CASC. It solved:

FOF: 73 out of 150,

CNF: 45 out of 150,

SAT: 51 out of 100,

UEQ: 2 out of 100.

This is not bad for a first time, but there is still some work to do.

30

Conclusions, Future Work

• We gave a new calculus, which is somewhat similar to

resolution, and which is refutationally complete for first-order

logic.

• Since the algorithm provides an implicit completeness proof,

this calculus could be used for saturation-based theorem

proving.

• But we do not recommand this: The calculus is intended to be

used in combination with the model search algorithm.

• In the implementation, understand which lemmas should be

forgotten. Find good heuristics. Develope an intuition of how

it searches, and what the proofs mean.

• Extend calculus? (theories, well-behaved infinite models)

31

