
Classical Logic with Partial Functions

Wien, 10 March, 2010

Hans de Nivelle

University of Wroc law, Poland

1

Motivation

• Programs contain partial functions. In principle, partial

functions can be made total, but it is unnatural in most cases.

Partial functions make it possible to obtain more general

interfaces.

Less general interfaces are harder to use and less often

applicable.

• One needs a logic that can deal with partial functions. Nothing

can be assumed about ill-defined terms.

2

Requirements

• We think that types and preconditions should be identified.

Both of them are just predicates.

• Since binary preconditions exist, binary types should be also

possible.

• There should be no a priori restriction on the type system.

(Types are first-class citizens.)

3

Lazy Operators

We introduce two lazy operators, which mix typing conditions and

usual formulas:

lazy implication: Lazy implication [A]B is well-typed if:

• A is well-typed, and

• If A is true, then B is well-typed.

(Standard implication A → B is well-typed if A and B are

well-typed.)

lazy conjunction: Lazy conjunction 〈A〉B is well-typed if:

• A is well-typed, and

• If A is true, then B is well-typed.

(Standard conjunction A ∧ B is well-typed if A and B are

well-typed.)

4

Some More Operators

Prop: Prop(A) is allways well-typed. In addition, it is true if A is

a well-typed proposition.

(Prop is a logical operator, not a predicate!)

∀, ∃: ∀x P (x), ∃x P (x) are well-typed if for every x, P (x) is

well-typed.

= t1 = t2 is always well-typed. If you don’t want that, it is

possible to define your own equality.

5

Discourse

A discourse F1, . . . , Fn is well-typed if, for each i, Prop(Fi) follows

from F1, . . . , Fi−1.

6

Example of a Discourse

∀x Prop(Nat(x)),

Nat(0),

∀x Nat(x) → Nat(succ(x)),

∀xy Nat(x) ∧ Nat(y) → Prop(x ≤ y),

∀xy [Nat(x), Nat(y), Nat(z)] x ≤ y ∧ y ≤ z → x ≤ z,

∀xy [Nat(x), Nat(y)] y ≤ x → Nat(x − y),

∀xy [Nat(x), Nat(y)] x ≤ y → ∃z 〈 Nat(z), x ≥ z 〉 x − z = y.

7

Semantics

The semantics in the paper is a bit more complicated, but

everything important is present in the following definition:

Definition: An interpretation I = (D, f , t, e, []) is defined by:

• A domain D.

• Two distinct truth values f and t.

• An error value e.

• A function [] that interprets the function symbols: If f is a

function symbol with arity n, then [f] is a total function from

Dn to D.

8

Semantics of Logical Operators (1)

The standard logical operators ⊥,⊤,¬,∨,∧,→,↔:

• I(⊥) = f , I(⊤) = t.

• If I(A) 6∈ {f , t}, then I(¬A) = e.

If I(A) ∈ {f , t}, then I(¬A) is defined as usual.

• If one of I(A), I(B) not in {f , t}, then

I(A ∨ B) = I(A ∧ B) = I(A → B) = I(A ↔ B) = e.

If both of I(A), I(B) ∈ {f , t}, then

I(A ∨ B), I(A ∧ B), I(A → B) and I(A ↔ B) are defined as

usual.

9

Semantics of Logical Operators (2)

• If I(A) ∈ {f , t}, then I(Prop(A)) = t. Otherwise,

I(Prop(A)) = f .

• Let x be a variable, let F be a formula. Let

R = {Ix
d (F) | d ∈ D}.

If R 6⊆ {f , t}, then I(∀x F) = I(∃x F) = e.

If R ⊆ {f , t}, then I(∀x F) and I(∃x F) are defined by the

following table:

R ∀ ∃

{f} f f

{t} t t

{f , t} f t

10

Semantics of [A]B and 〈A〉B :

I(A) I(B) I([A]B) I(〈A〉B)

f · · · t f

6∈ {f , t} · · · e e

t f f f

t 6∈ {f , t} e e

t t t t

11

Sequents/Judgements

We define sequents as usual, as objects of form Γ1, . . . , Γn ⊢ A.

A sequent is valid if in every interpretation I = (D, f , t, e, []) where

I(Γ1) = · · · = I(Γn) = t, we have also I(A) = t.

The sequent is strongly valid if in addition, in every interpretation

I,

• Either I(Γ1) = · · · = I(Γn) = t, or

• the first i with I(Γi) 6= t has I(Γi) = f .

12

Revelation 3:15-17

15 I know your deeds, that you are neither cold nor hot. I wish

you were either one or the other!

16 So, because you are lukewarm, neither hot nor cold, I am about

to spit you out of my mouth.

17 You say, I am rich; I have acquired wealth and do not need a

thing. But you do not realize that you are wretched, pitiful,

poor, blind and naked.

13

Intermediate Summary

At this point, we have a complete semantic characterization of

classical logic with partial functions.

The notion of strong validity is designed in such a way that

sequents can be only strongly valid when they are well-typed.

We call the logic partial classical logic or PCL.

14

One Sided Sequents (1)

We want to design a sequent calculus for the notion of strong

validity in PCL. We have the following situation:

• PCL is truth-value based, i.e. essentially classical. (Because

Prop(A) ⊢ A ∨ ¬A is strongly valid.)

• It is clear from the notion of strong validity that order of

formulas is essential.

• Standard sequent calculus has rules (those for ¬ and →) that

move formulas from premiss to conclusion in a sequent.

⇒ Switch to one-sided sequents.

15

One-Sided Sequents (2)

Definition: A one-sided sequent Γ has form Γ1, . . . , Γn ⊢, where

Γ1, . . . , Γn are formulas.

We say that Γ fails in an interpretation I if there is an i, s.t

I(Γi) 6= t.

We say that Γ fails strongly in I if there is an i, s.t I(Γi) = f and

for all j, (1 ≤ j < i), I(Γi) = t.

We say that Γ is unsatisfiable if Γ fails in every interpretation.

We say that Γ is strongly unsatisfiable if Γ fails strongly in every

interpretation.

16

Proving by Refuting

Theorem Let Γ ⊢ A be a sequent. The sequent Γ ⊢ A is strongly

valid iff the one sided sequent Γ,¬A ⊢ is strongly unsatisfiable.

Proof

So, we can restrict our attention to one-sided sequents.

17

Examples

Valid, but not strongly valid:

A ⊢ A.

Strongly valid:

Prop(A) ⊢ A ∨ ¬A.

Unsatisfiable, but not strongly:

Prop(A), ¬B, A ∨ B, ¬A ⊢

Strongly unsatisfiable:

Prop(A), Prop(B), ¬B, A ∨ B,¬A ⊢

18

Sequent Calculus SeqPCL :

The following two rules are the most important rules of the

calculus:

Rules for 〈 〉 and ∨

Γ1, A, B, Γ2 ⊢

Γ1, 〈A〉 B, Γ2 ⊢

Γ1, A, Γ2 ⊢ Γ1, B, Γ2 ⊢

Γ1, A ∨ B, Γ2 ⊢
.

Theorem For both of the rules holds: The conclusion sequent is

strongly unsatisfiable iff all of its premisses are strongly

unsatisfiable.

Proof: If you think that this is obvious, then think harder.

19

Reduction to ∨ and 〈 〉 :

Quite a lot can be reduced to ∨ and 〈 〉 :

A ∧ B ⇒ (〈A〉B) ∨ (〈B〉A)

[A]B ⇒ ¬A ∨ (〈A〉B)

A → B ⇒ ¬A ∨ B

A ↔ B ⇒ (〈A〉B) ∨ (〈¬A〉¬B)

〈A〉⊤ ⇒ A

〈⊤〉A ⇒ A

∀x P (x) ⇒ 〈 ∀x P (x) 〉 P (t)

20

Pushing ¬ out of the way:

Negation can be pushed inwards: (pretty much standard)

¬⊥ ⇒ ⊤

¬⊤ ⇒ ⊥

¬¬A ⇒ A

¬(A ∧ B) ⇒ ¬A ∨ ¬B

¬(A ∨ B) ⇒ ¬A ∧ ¬B

¬(A → B) ⇒ A ∧ ¬B

¬(A ↔ B) ⇒ A ↔ ¬B

¬(〈A〉B) ⇒ [A]¬B

¬([A]B) ⇒ 〈A〉¬B

¬∀x F ⇒ ∃x ¬F

¬∃x F ⇒ ∀x ¬F

21

Pushing Prop Inwards

Prop can be pushed inwards until it hits an atom:

Prop(⊤) ⇒ ⊤

Prop(⊥) ⇒ ⊤

Prop(¬A) ⇒ Prop(A)

Prop(Prop(A)) ⇒ ⊤

Prop(A ∧ B) ⇒ 〈 Prop(A) 〉 Prop(B)

Prop(A ∨ B) ⇒ 〈 Prop(A) 〉 Prop(B)

Prop(A → B) ⇒ 〈 Prop(A) 〉 Prop(B)

Prop(A ↔ B) ⇒ 〈 Prop(A) 〉 Prop(B)

22

Pushing Prop Inwards (2)

Prop(〈A〉B) ⇒ 〈 Prop(A) 〉(A → Prop(B))

Prop([A]B) ⇒ 〈 Prop(A) 〉(A → Prop(B))

Prop(∀x F) ⇒ ∀x Prop(F)

Prop(∃x F) ⇒ ∀x Prop(F)

Prop(t1 = t2) ⇒ ⊤

23

Some More Rules:

Γ1, ∀x P (x), P (t), Γ2 ⊢

Γ1, ∀x P (x), Γ2 ⊢

Γ1, P (x), Γ2 ⊢

Γ1, ∃x P (x), Γ2 ⊢

The ∃-rule has the condition that x must be not free in Γ1 or Γ2.

Theorem For both rules holds: The conclusion is strongly

unsatisfiable iff the premiss is strongly unsatisfiable.

proof: ∀ has some pitfals. The rule for ∃ seems standard, but is not

standard. (The situation is similar to ∨)

24

Equality Axioms:

Prop(A), A, t1 = u1, . . . , tn = un,¬A′ ⊢

t1 = u1, . . . , tn = un, t 6= u ⊢

For the first axiom it must be the case that

A, t1 = u1, . . . , tn = un |= A′ in the standard theory of equality. For

the second axiom, it must be the case that

t1 = u1, . . . , tn = un ⊢ t = u in the standard theory of equality.

25

Weakening

Γ1,¬Prop(A) ⊢ Γ1, Γ2 ⊢

Γ1, A, Γ2 ⊢

Γ ⊢

Γ, A ⊢

(For both rules, A can be positive or negative.)

Contraction, Cut

Γ1, A, Γ2, A, Γ3 ⊢

Γ1, A, Γ2, Γ3 ⊢

Γ1, ¬A ⊢ Γ1, A, Γ2 ⊢

Γ1, Γ2 ⊢

(A can be a negative formula as well.)

Weakening with Contraction allow a limited form of permutation.

26

Completeness Proof

Without ∀, the proof would have been easy:

Careless treatement of ∀ results in infinite sequents, which are

problematic.

Definition: A sequent Γ1, . . . , Γn is in Prop normal form, (PNF) if

for every Γi, either

1. Γi is of form t1 = t2, t1 6= t2, Prop(A) or ¬Prop(A), or

2. there exists a j < i, s.t. Γj = Prop(Γi).

Lemma Let I be an interpretation. Let Γ be a sequent in PNF.

Then

Γ ⊢ fails strongly in I iff Γ fails in I.

Consequence: For sequents in PNF, strong unsatisfiability and

unsatisfiability are the same.

27

Reduction to PNF

Theorem: If SeqPCL is complete for sequents in PNF, then it is

complete for all sequents.

Proof: For a sequent Γ, let #Γ be the number of violations of the

definition of PNF.

We assume completeness in case when #Γ = 0, and use induction

to show completeness for #Γ > 0.

28

Completeness Proof for PNF

The completeness proof for PNF is standard. One must show that

PNF can be preserved during proof search.

29

Conclusions, Future Work

• I believe that PCL is ’the right logic’ for verification and

applications.

• The sequent calculus is not useful for proof search, nor for

proof presentation. Natural deduction is more suitable for

proof presentation.

• I came closer to fulfilling a promise in: Hans de Nivelle, Jia

Meng, Geometric Resolution: A Proof Procedure Based on

Finite Model Search, IJCAR 2006.

30

